期刊文献+
共找到353篇文章
< 1 2 18 >
每页显示 20 50 100
Effect of Strain Ratio on Fatigue Model of Ultra-fine Grained Pure Titanium
1
作者 QIANG Meng YANG Xirong +1 位作者 LIU Xiaoyan LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1169-1178,共10页
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life... The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude. 展开更多
关键词 ultra-fine grained pure titanium low cycle fatigue life model mean stress relaxation mode strain ratio fracture morphology
下载PDF
Preparation of ultra-fine grain Ni-Al-WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing 被引量:4
2
作者 熊拥军 邱子力 +3 位作者 李瑞迪 袁铁锤 吴宏 刘锦辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3685-3693,共9页
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele... The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect. 展开更多
关键词 laser clad friction stir processing Ni-Al-WC coating ultra-fine grain interlocking bonding
下载PDF
Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam 被引量:2
3
作者 谈军 周张健 +4 位作者 朱小鹏 郭双全 屈丹丹 雷明凯 葛昌纯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1081-1085,共5页
Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of... Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten. 展开更多
关键词 TUNGSTEN tungsten alloy ultra-fine grain surface effects thermal shock transient high heat flux
下载PDF
Precision Grinding of Reaction Bonded Silicon Carbide Using Coarse Grain Size Diamond Wheels 被引量:3
4
作者 ZHAO Qingliang CHEN Junyun BRINKSMEIER E 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期269-275,共7页
Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. Th... Reaction bonded SiC(RBSiC) is attractive for optical application because of its favorable properties and low fabrication cost. However, the difficultness and cost involved in RBSiC grinding limit its application. The investigation on high efficient and low-cost machining with good grinding quality is desired. Generally, high efficient machining for RBSiC is realized by using coarse grain size grinding wheels, but serious grinding damage is inevitable. In this paper, monolayer nickel electroplated coarse grain size diamond grinding wheels with grain sizes of 46 μm, 91 μm, and 151 μm were applied to the grinding of RBSiC. An electrolytic in-process dressing(ELID) assisted conditioning technique was first developed by using cup shape copper bonded conditioning wheels with grain sizes of 15 μm and 91 μm to generate the conditioned coarse grain size wheels with minimized wheel run-out error within 2 μm, constant wheel peripheral envelop as well as top-flattened diamond grains. Then, the grinding experiments on RBSiC were carried out to investigate the grinding performance and material removal mechanism. The experimental results indicate that the developed conditioning technique is applicable and feasible to condition the coarse grain size diamond wheels under optimal conditioning parameters, and the material removal mechanism involved in RBSiC grinding is the combination of brittle fracture and ductile deformation to generate smooth ground surface. This research is significant for the high efficient and low-cost precision grinding of RBSiC with good ground surface quality. 展开更多
关键词 precision grinding SIC coarse grain size diamond wheel ELID assisted conditioning material removal mechanism
下载PDF
Microstructures of ultra-fine grained FeCoV alloys processed by ECAP plus cold rolling and their evolutions during tempering 被引量:5
5
作者 伍来智 陈军 +1 位作者 杜忠泽 王经涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期602-606,共5页
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a... A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K. 展开更多
关键词 FeCoV alloy equal channel angular pressing cold rolling ultra-fine grain
下载PDF
Isothermal Growth Kinetics of Ultra-fine Austenite Grains in a Nb-V-Ti Microalloyed Steel 被引量:4
6
作者 Shengjie Yao Linxiu Du Xianghua Liu Guodong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期615-618,共4页
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s... Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains. 展开更多
关键词 ultra-fine austenite grain grain growth kinetics Microalloyed steel
下载PDF
Improving the Fatigue Performance of the Welded Joints of Ultra-Fine Grain Steel by Ultrasonic Peening 被引量:5
7
作者 王东坡 王婷 +1 位作者 霍立兴 张玉凤 《Transactions of Tianjin University》 EI CAS 2004年第2期113-117,共5页
Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The... Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening. 展开更多
关键词 fatigue strength ultrasonic peening welded joints ultra-fine grain steel
下载PDF
Effect of welding heat input on HAZ character in ultra-fine grain steel welding 被引量:3
8
作者 张富巨 许卫刚 +3 位作者 王玉涛 王燕 张学刚 廖永平 《China Welding》 EI CAS 2003年第2期122-127,共6页
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w... In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding. 展开更多
关键词 heat input heat-affected zone ultra-fine grain steel ultra narrow-gap welding
下载PDF
Microstructural Evolution and Thermal Stability of Ultra-fine Grained Al-4Mg Alloy by Equal Channel Angular Pressing 被引量:1
9
作者 HongbinGENG SubbongKANG ShiyuHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期315-318,共4页
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o... Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h. 展开更多
关键词 Aluminum alloy Equal channel angular pressing ultra-fine grain Microstructural stability
下载PDF
Effect of upsetting force on microstructure of welds in resistance spot welding of 400 MPa ultra-fine grain steel 被引量:1
10
作者 Deng Lipeng Ke Liming +1 位作者 Liu Jinhe Ji Chuntao 《China Welding》 EI CAS 2016年第2期76-82,共7页
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than... The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal. 展开更多
关键词 ultra-fine grain steel resistance spot welding MICROSTRUCTURE mechanical property
下载PDF
THE EFFECT OF THE CBN WHEEL DRESSING AND THE GRAIN HEIGHT PROTRUDING FROM THE BOND ON THE GRINDING PERFORMANCE
11
作者 徐载熊 《Journal of China Textile University(English Edition)》 EI CAS 1989年第2期11-20,共10页
CBN (Cubic Boron Nitride) is a highly efficient abrasive and has unique properties (highhardness, high thermal stability and high chemical inertia). As early as 1969 CBN Wheels had al-ready been made and showed excell... CBN (Cubic Boron Nitride) is a highly efficient abrasive and has unique properties (highhardness, high thermal stability and high chemical inertia). As early as 1969 CBN Wheels had al-ready been made and showed excellent performance for grainding high speed steels and othermaterials hard to be ground. So far, however, CBN Wheels are still not popularly utilized in theindustry, the writer considers the main reason being the inadequate study for practical applica-tions and especially the suitable dressing technique. The dressing of resinoid CBN Wheels discussed in the paper, is different from that ofconventional ones. It has to be divided into two operations, truing and sharpening, each of whichhas its specific and independent functions. A simple dressing method with a lot of informationsuitable for production is studied; finally, the grain height protruding from the bond is taken asan index for evaluating the dressing results, and the effect of grain height on the grinding per-formance is discussed. By selecting proper conditions according to the workpiece requirements, abetter technical and economical benifit can be obtained. 展开更多
关键词 abrasive wheels grinding grain size DRESSING truing and SHARPENING grain HEIGHT protruding from the BOND CBN wheel
下载PDF
Surface Cracking Behaviors of Ultra-Fine Grained Tungsten Under Edge Plasma Loading in the HT-7 Tokamak
12
作者 朱大焕 刘洋 +2 位作者 陈俊凌 周张健 鄢容 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第6期605-608,共4页
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re... Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition. 展开更多
关键词 ultra-fine grain tungsten plasma facing materials cracking behaviors plasma irradiation
下载PDF
Investigation on fracture behavior of the welded joint HAZ of ultra-fine grain steel SS400
13
作者 朱政强 陈立功 +3 位作者 荆洪阳 葛景国 倪纯珍 饶德林 《China Welding》 EI CAS 2003年第2期142-145,共4页
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel... The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM). 展开更多
关键词 ultra-fine grain steel fitness for purpose general yielding FEM
下载PDF
Groove Design and Microstructure Research of Ultra-Fine Grain Bar Rolling
14
作者 Xuetong Li Lei Cao +1 位作者 Minting Wang Fengshan Du 《Modeling and Numerical Simulation of Material Science》 2012年第4期67-75,共9页
New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section... New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section of the material, and meanwhile satisfy the requirements of shape and size. Principle of grain refinement, based on experimental research of small specimen, is that grain refinement of ferrite is mainly dynamic recrystallization when low-carbon alloy steel is at low temperature deformation. Relationship of grain size and z-factor is also obtained through experimental research, as well as ultra-fine ferrite grain less than 1 micron. To predict strain, shape, dimensions and grain size of the material in rolling process, numerical simulation model of the warm groove bar rolling process is established via nonlinear finite element method, and distribution of grain size of the final section is obtained via finite element subroutine. The result indicates that ultra-fine grain bar rolling can accomplish at low temperature region. 展开更多
关键词 BAR FEM Flat-Oval GROOVE Large PLASTIC Strain Low Temperature ultra-fine grain
下载PDF
Material Removal Behavior and Surface Integrity in Grinding of UltrafineGrained WC-Co Materials 被引量:1
15
作者 原一高 车俊华 +3 位作者 王焱坤 孙卫权 白佳声 祝新发 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期219-224,共6页
Due to the excellent combination of wear resistance and fracture toughness,the ultrafine-grained WC-Co composites can significantly improve the durability and reliability of industrial tools.However,the grinding of ul... Due to the excellent combination of wear resistance and fracture toughness,the ultrafine-grained WC-Co composites can significantly improve the durability and reliability of industrial tools.However,the grinding of ultrafine-grained WC-Co remains a challenge.In order to provide an experimental basis for improving grinding quality of ultrafine-grained WC-Co,a series of surface grinding experiments on ultrafine-grained WC-Co hardmetals were conducted by diamond wheel under various grinding conditions,and the material removal behavior and surface integrity in grinding of ultrafine-grained WC-Co materials were characterized by means of scanning electron microscopy(SEM),X-ray microstress analyzer and surface roughness analyzer in this paper.The results indicate that the material removal behavior in grinding of ultrafine-grained WC-Co materials is determined not only by the abrasive grain size on the wheel,but also by the depth of cut.The roughness values of ground surface increase with increasing grit size of diamond wheel,and increase initially,then decrease with increase in depth of cut.Grinding causes the residual compressive stress in the surface layer of ground cemented carbides under various grinding conditions;the magnitude of residual surface stress increases with increasing grit size of diamond wheel,and isn't changed obviously along with the change of depth of cut. 展开更多
关键词 ultrafine diamond roughness grinding toughness wheel compressive durability analyzer magnitude
下载PDF
Gradient Ultra-fine Grained Surface Layer in 6063 Aluminum Alloy Obtained by Means of Rotational Accelerated Shot Peening
16
作者 Ying LIU Hailu XU +2 位作者 He XIAN Yanfang LIU Zheng LI 《Research and Application of Materials Science》 2021年第1期38-46,共9页
Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain ... Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness. 展开更多
关键词 rotational accelerated shot peening gradient ultra-fine grained structure orthogonal experimental design processing parameters
下载PDF
Nano-structure of Iron Formed by Mechanical Grinding 被引量:1
17
作者 YANG Yuanzheng MA Xueming +2 位作者 DONG Yuanda HE Yizhen WANG Gengmiao 《Chinese Physics Letters》 SCIE CAS CSCD 1992年第5期266-268,共3页
Nano-crystalline elemental iron powder was successfully formed by high-energy ball grinding.The x-ray diffraction,transmission electron microscopy and Mdssbauer spectroscopy were employed to follow the structure chang... Nano-crystalline elemental iron powder was successfully formed by high-energy ball grinding.The x-ray diffraction,transmission electron microscopy and Mdssbauer spectroscopy were employed to follow the structure changes in the process of mechanical grinding with milling time.The thermal stability of nanocrystalline iron powder was also studied by differential scanning calorimetry.The results showed that the grain size reduces drastically at the initial stage of the milling and reaches 6nm after 40h milling.The broadening of Mdssbauer spectrum is attributed to the large fraction of iron atoms existing at the interfaces for the powder milled. 展开更多
关键词 grinding grain STRUCTURE
下载PDF
Grinding Characteristics Of Directionally Aligned SiC Whisker Wheel - Comparison With A12O3 Fiber Wheel
18
作者 魏源迁 山口胜美 +2 位作者 菊泽贤二 洞口严 中根正喜 《Journal of Donghua University(English Edition)》 EI CAS 2003年第4期70-75,共6页
A unique SiC whisker wheel was invented,in which the whiskers were aligned normally to the grinding wheel surface.In this paper,grindabilities of the SiC whisker wheel are investigated and compared with those of other... A unique SiC whisker wheel was invented,in which the whiskers were aligned normally to the grinding wheel surface.In this paper,grindabilities of the SiC whisker wheel are investigated and compared with those of other wheels of SiC grains,Al2O3 grains,as well as Al2O3 long and short fibres which were also aligned normally to the grinding wheel surface,respectively.The main research contents concern grinding characteristics of a directionally aligned SiC whisker wheel such as material-removal volume,wheel-wear rates,integrity of the ground surfaces,grinding ratios and grinding efficiency.Furthermore,grinding wheels of whiskers and fibres have a common disadvantage:they tend to load easily.The authors have proposed a simple method of loading-free grinding to overcome this propensity and investigate some related grinding characteristics under loading-free grinding conditions. 展开更多
关键词 grinding grinding wheel SiC whisker Al2O3 fiber Directional alignment Loose grain Loading-free grinding ratio Surface roughness
下载PDF
Development of Highly Digestible Grain Sorghum Lines Suitable for Efficient Dry-Grind Ethanol Production
19
作者 Joan R. Hernandez Sergio C. Capareda 《Journal of Sustainable Bioenergy Systems》 2019年第3期98-118,共21页
Low-world oil prices but supportive government policies provide growing environmental and energy security support favorable for the bioethanol market. The need to generate large and sustainable supply of biomass to ma... Low-world oil prices but supportive government policies provide growing environmental and energy security support favorable for the bioethanol market. The need to generate large and sustainable supply of biomass to make bioethanol will require the development of crops grown specifically for bioenergy production. Given the existing history of genetic improvement and infrastructure available for sorghum, (Sorghum bicolor L. Moench) hybrids will be one of the several species dedicated as energy crop and the subject of this study. Texas A & M University Sorghum Breeding Program has developed hybrid sorghum varieties with high protein digestibility and improved starch digestibility. Most of the previous research on grain sorghum focused on the digestibility of sorghum protein from the nutritional point of view. The aim of the current study was to select best sorghum lines from? relatively large and diverse sorghum samples that breeders are currently working with for the development of new low energy input liquefaction, saccharification and fermentation methodologies to produce bioethanol. Limited researches studies report on the performance of sorghum varieties in ethanol fermentation in relation to the protein and starch digestibility of sorghum. 展开更多
关键词 BIOETHANOL Dry-grind FERMENTATION HIGHLY Digestible grain SORGHUM SACCHARIFICATION
下载PDF
Deformation and fracture behavior of commercially pure titanium with gradient nano-to-micron-grained surface layer 被引量:3
20
作者 尹雁飞 徐巍 +2 位作者 孙巧艳 肖林 孙军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期738-747,共10页
Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ... Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium. 展开更多
关键词 surface mechanical grinding treatment commercially pure titanium gradient nano-to-micron grain strain hardening DIMPLE
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部