In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s...In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.展开更多
The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated. X-ray diffraction (XRD), X-ray pho...The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), thermogravimetry analysis (TG), atomic absorption spectroscopy and elementary analysis are employed for the catalyst characterization. The results show that, the formation of Pb4O(OC6H5)6 through the reaction of phenol and lead species in the catalyst leads to the crystal phase change of active component and serious leaching of lead, which is the cause of the catalyst deactivation. In addition, the composition of the leached lead is ascertained to be a mixture of Pb4O(OC6H5)6 and PbO with the weight percentage of 62.7% and 37.3%, respectively.展开更多
The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4...The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4 PME in 1. 0 mol/L H2SO4 solution at 30 C, and then the PbSO4 in the PMEs were formed to Pb or PbO2 using an unsymmetrical signal(Qa/Qe for PbSO4/Pb electrode and Qe/Qa for PsO2/ PbSO4 electrode being 0. 1-0. 3) in 2. S mol/L H2SO4 solution. The results show that the CV characteristic of either PbSO4/Pb or PsO2/PbSO4 PME prepared from PhCO3 are as good as that of both electrodes made from lead oxide powder produced by ball mill.展开更多
Carbamates are important intermediates in the syntheses of pesticides, herbicides, drugs, polyurethane-based polymers, and other fine and commodity chemicals.
The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative ...The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.展开更多
A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to...A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.展开更多
Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage ...Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage increases with decreasing pH values and reaches a maximum at pH=2-3. Under some conditions, the lead residual concentration is below national integrated wastewater discharge standard, even drinking water standard. The removal behavior is a complicated non-homogeneous solid/liquid reaction, which can be described by two stages from kinetic point of view. At the earlier stage, reaction rate is so fast that its kinetic course is intricate, which requires further study. At the latter stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant k1 and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 11.93 kJ/mol and frequency factor (A) is 2.51 s^-1. X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive X-ray fluoresence spectrometer (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) test were conducted in this work. It is indicated that the main mechanism is dissolution-precipitation, accompanying with superficial sorption.展开更多
The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), con...The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn’t contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate powder is 2PbCO3·Pb(OH)2. (3) The particle size of the prepared lead carbonate is smaller than that of the pur- chased lead carbonate.展开更多
A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surf...A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.展开更多
In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynami...In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.展开更多
The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual c...The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual carbon and promoted the chemical bond between residual carbon from phenolic resin and flake graphite. The carbon white could strengthen the residual carbon from phenolic resin. These two additives improved the mechanical properties of AG refractories at both room temperature and high temperature, and thermal shock resistance was improved noticeably. When the two additives were doped together, carbon white could retard the evaporation of B 2O 3. Thermal shock resistance was guaranteed with a smaller amount of ultra-fine boron carbide.展开更多
The global burden of heavy metal environmental pollution remains one of the most challenging issues to be addressed urgently. Lead (Pb) has been well recognized as a toxic environmental pollutant. The main objective o...The global burden of heavy metal environmental pollution remains one of the most challenging issues to be addressed urgently. Lead (Pb) has been well recognized as a toxic environmental pollutant. The main objective of this study was to examine the adsorption efficiency of phosphoric activated coconut coir activated carbon for lead (II) removal from an aqueous solution. Synthesized activated carbon was characterized before and after the adsorption of Pb(II) by powder X-Ray diffraction, Fourier transforms infrared spectroscopy and scanning electron microscopy coupled with energy dispersive X-Ray. Furthermore, the removal efficiency of Pb(II) of synthesized activated carbon was tested with different concentrations of Pb(II) solutions, pH levels, adsorbent dosages, and contact time. Atomic absorption spectroscopy was used to analyze the Pb(II) concentrations in water samples. The maximum Pb(II) removal percentage of 100% was obtained with 50 mL of 5 mg/L Pd(II) ion solution and 0.20 g of the synthesized activated carbon. Adsorption data were well fitted with the Freundlich adsorption isotherm model, and adsorption kinetics were fitted with the pseudo-second-order kinetic model with <i>R</i><sup>2</sup> of 0.99. These results conclude that the synthesized activated carbon can be used as a potential sorbent for the removal of lead from wastewaters.展开更多
This study investigated the volatilization kinetics of lead in pellets made of Zn-Pb-bearing dusts mixed with coal powder,in a nitrogen atmosphere and in the temperature range between 1 100 ℃ - 1 300℃ ,and showed th...This study investigated the volatilization kinetics of lead in pellets made of Zn-Pb-bearing dusts mixed with coal powder,in a nitrogen atmosphere and in the temperature range between 1 100 ℃ - 1 300℃ ,and showed that the reduction temperature has a significant effect on the volatilization rate of lead and that neither the particle size of the coal powder nor the extra carbon content has any effect on the volatilization rate. The obtained activation energy for the volatilization of lead is 88.74 kJ/mol. The volatilization rate of lead is controlled by both the lead evaporation reaction and the diffusion of gaseous lead through the gas boundary layer covering the surface of the reduced liquid lead.展开更多
Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FA...Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FAPbI_(3) perovskite precursor solutions.Besides,the most efficient FAPbI_(3) layers are prepared by the spin-coating method,which is limited to the size of the device.Herein,the stability of FAPbI_(3) perovskite solution with methylammonium chloride(MACl)or cesium chloride(CsCl)additive is studied for preparing perovskite film through an upscalable blade-coating method.Each additive works well for achieving a high-quality FAPbI_(3) film,resulting in efficient carbon electrode perovskite solar cells(pero-SCs)in the ambient condition.However,the perovskite solution with MACl additive shows poor aging stability that noα-FAPbI_(3) phase is observed when the solution is aged over one week.While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pureα-FAPbI_(3) perovskite film even the solution is aged over one month.During the solution aging process,the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducingδ-phase FAPbI_(3).Whereas,replacing MACl with CsCl could effectively solve this issue.Our founding shows that there is a great need to develop a non-MACl FAPbI_(3) perovskite precursor solution for cost-effective preparation of pero-SCs.展开更多
This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electr...This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electrolysis at constant voltage enables the reduction of the lead (Pb2+) and the accumulation of the metallic lead at and into the carbon paste;the reoxidation of the Pb (Linear sweep voltammetry) leads to the anodic striping peak. The effect of the main operating parameters on the shape of the peak and the magnitude of the current was examined and their optimal values were determined. Then calibration was achieved and the method was successfully applied (using all the optimized parameters) to the determination of lead in water, with a detection limit of 0.138 μg·L-1. Compared to other methods (ICP-AES for example), the proposed method offers a satisfactory detection limit of the Pb2+ (0.138 μg·L-1) because of the important specific area of the carbon paste electrode, for a significantly lower cost. Besides, there is no observed loss in the electrode answer in terms of peak current, which means that there is no any irreversible steps nor deactivation of the electrode, even after ten successive measurements;only reduction of the lead followed by the deposit oxidation was observed at the electrode.展开更多
Recently, many attempts have been made to use carbon nanotubes in analytical chemistry, especially in adsorption of heavy metal ions from water. In this study, multiwalled carbon nanotubes (MWCNTs) were functionalized...Recently, many attempts have been made to use carbon nanotubes in analytical chemistry, especially in adsorption of heavy metal ions from water. In this study, multiwalled carbon nanotubes (MWCNTs) were functionalized with tris(2-aminoethyl) amine. The functionalized nanoparticles were characterized using Fourier transform infrared (FTIR), thermal gravimetric analyzer (TGA), elemental analysis, and Raman spectroscopy. The results revealed that the functionalization reaction was successfully accomplished. Lead adsorption from water was carried out using functionalized MWCNTs and measured by flame atomic absorption spectrometry (FAAS). The effects of pH, shaking time, initial metal ion concentration, and adsorbent dosage on the adsorption process were studied via batch method. The results obtained showed that removal of lead ions strongly depended on the pH. Desorption study revealed that lead ions adsorbed on the functionalized MWCNTs could be desorbed at pH 3 due to breakage of complexes formed on the sorbent surface. Maximum adsorption capacity of the sorbent under the optimal conditions was 43 mg/g. This favorable adsorption capacity suggests that functionalized carbon nanotubes can be applied for removal of lead from water solutions. The data obtained were fitted with the Langmuir and Freundlich isotherm adsorption models and Langmuir model showed better agreement with the experimental data.展开更多
Measurement of the neutron yield is performed at a primary energy of 400 MeV/u carbons for the Pb target.Water-bath activation-foil method is used in a moderation measurement with Au foils to detect the moderated neut...Measurement of the neutron yield is performed at a primary energy of 400 MeV/u carbons for the Pb target.Water-bath activation-foil method is used in a moderation measurement with Au foils to detect the moderated neutrons. The neutron yield is determined to be 18.4±2.1 per carbon by integrating the neutron flux over the entire water volume. The corresponding simulation values are performed by Geant4 code with three models to compare with the experimental results. The comparison shows that the calculated result with the INCL model is in good agreement with the experimental data.展开更多
Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSC...Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSCs with simplified device architecture and fabrication procedures could further enhance the competitive strength of PSC technology.In this work,we present an in-situ defect passivation(ISDP)assisted full-printing of high performance formamidine-lead bromide(FAPbBr_(3))PSCs.Only three rapid printing steps are involved for electron transporting layer(ETL),perovskite and carbon to form a complete solar cell on the low-cost fluorine-doped tin oxide(FTO)substrate.Long-chain polymer monomethyl ether polyethylene glycol is particularly utilized as the ISDP passivator,leading to conformal coating on the rough FTO and defect passivation for both ETL and perovskite during printing.A high efficiency of 10.85%(certified 10.14%)and a high V_(oc)up to 1.57 V are achieved for the printed device.The unencapsulated PSCs maintain above 90%of the initial efficiency after continuously heating at 85℃for 1000 h and over 80%of the efficiency after the maximum power point tracking for 3500 h.The fully printed semitransparent PSCs with carbon grids(CGs)show average visible light transmittance over 33%and an efficiency of 8.81%.展开更多
The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and c...The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.展开更多
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the High-Tech Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science&Technology During the12th Five-Year Plan Period,China
文摘In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.
基金This work was supported by National Natural Science Foundation of China (No.20636030 No.20176008)Natural Science Foundation of Tianjin(No.07 JCZDJC00100)
文摘The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), thermogravimetry analysis (TG), atomic absorption spectroscopy and elementary analysis are employed for the catalyst characterization. The results show that, the formation of Pb4O(OC6H5)6 through the reaction of phenol and lead species in the catalyst leads to the crystal phase change of active component and serious leaching of lead, which is the cause of the catalyst deactivation. In addition, the composition of the leached lead is ascertained to be a mixture of Pb4O(OC6H5)6 and PbO with the weight percentage of 62.7% and 37.3%, respectively.
基金Supported by the National Natural Science of China (29677013) Chenguang Foundation of Wuhan Municipal Science and Technology
文摘The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4 PME in 1. 0 mol/L H2SO4 solution at 30 C, and then the PbSO4 in the PMEs were formed to Pb or PbO2 using an unsymmetrical signal(Qa/Qe for PbSO4/Pb electrode and Qe/Qa for PsO2/ PbSO4 electrode being 0. 1-0. 3) in 2. S mol/L H2SO4 solution. The results show that the CV characteristic of either PbSO4/Pb or PsO2/PbSO4 PME prepared from PhCO3 are as good as that of both electrodes made from lead oxide powder produced by ball mill.
文摘Carbamates are important intermediates in the syntheses of pesticides, herbicides, drugs, polyurethane-based polymers, and other fine and commodity chemicals.
基金supported by the National Natural Science Foundation of China (52064028,22002054)Yunnan Fundamental Research Projects (202401AT070334,202101AS070013)Yunnan Provincial Major Science and Technology Special Plan Projects (202202AF080002)。
文摘The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.
基金supported jointly by the National Key R&D Program of China (No. 2016YFC0600408)the National Natural Science Foundation of China (Nos. 41572060, 41773054, U1133602, 41802089)+3 种基金China Postdoctoral Science Foundation (No. 2017M610614)projects of YM Lab (2011)Innovation Team of Yunnan Province and KMUST (2008 and 2012)Yunnan and Kunming University of Science and Technology Postdoctoral Sustentation Fund
文摘A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.
文摘Kinetics and mechanisms on the removal of aqueous lead ion by carbonate hydroxyapatite (CHap) are investigated in the present work. Experimental results show that, in the whole pH range, the lead removal percentage increases with decreasing pH values and reaches a maximum at pH=2-3. Under some conditions, the lead residual concentration is below national integrated wastewater discharge standard, even drinking water standard. The removal behavior is a complicated non-homogeneous solid/liquid reaction, which can be described by two stages from kinetic point of view. At the earlier stage, reaction rate is so fast that its kinetic course is intricate, which requires further study. At the latter stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant k1 and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 11.93 kJ/mol and frequency factor (A) is 2.51 s^-1. X-ray diffraction (XRD), scanning electron microscopy with an energy dispersive X-ray fluoresence spectrometer (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) test were conducted in this work. It is indicated that the main mechanism is dissolution-precipitation, accompanying with superficial sorption.
文摘The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn’t contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate powder is 2PbCO3·Pb(OH)2. (3) The particle size of the prepared lead carbonate is smaller than that of the pur- chased lead carbonate.
基金the financial support provided by the National Natural Science Foundation of China (No.21573093)the National Key Research and Development Program (No.2017YFB0307501)Guangdong Innovative and Entrepreneurial Research Team Program (No.2013C092)
文摘A novel C/Pb composite has been successfully prepared by electmless plating to reduce the hydrogenevolution and achieve the high reversibility of the anode of lead-carbon battery (LCB). The depositedlead on the surface of C/Pb composite was found to be uniform and adherent to carbon surface. Becauselead has been stuck on the surface of C/Pb composite, the embedded structure suppresses the hydrogenevolution of lead-carbon anode and strengthens the connection between carbon additive and sponge lead.Compared with the blank anode, the lead-carbon anode with C/Pb composite displays excellent charge-discharge reversibility, which is attributed to the good connection between carbon additives and leadthat has been stuck on the surface of C/Pb composite during the preparation process. The addition of CIPb composite maintains a solid anode structure with high specific surface area and power volume, andthereby, it plays a significant role in the highly reversible lead-carbon anode.
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science and Technology Pillar Program during the Twelfth Five-Year Plan of China
文摘In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.
文摘The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual carbon and promoted the chemical bond between residual carbon from phenolic resin and flake graphite. The carbon white could strengthen the residual carbon from phenolic resin. These two additives improved the mechanical properties of AG refractories at both room temperature and high temperature, and thermal shock resistance was improved noticeably. When the two additives were doped together, carbon white could retard the evaporation of B 2O 3. Thermal shock resistance was guaranteed with a smaller amount of ultra-fine boron carbide.
文摘The global burden of heavy metal environmental pollution remains one of the most challenging issues to be addressed urgently. Lead (Pb) has been well recognized as a toxic environmental pollutant. The main objective of this study was to examine the adsorption efficiency of phosphoric activated coconut coir activated carbon for lead (II) removal from an aqueous solution. Synthesized activated carbon was characterized before and after the adsorption of Pb(II) by powder X-Ray diffraction, Fourier transforms infrared spectroscopy and scanning electron microscopy coupled with energy dispersive X-Ray. Furthermore, the removal efficiency of Pb(II) of synthesized activated carbon was tested with different concentrations of Pb(II) solutions, pH levels, adsorbent dosages, and contact time. Atomic absorption spectroscopy was used to analyze the Pb(II) concentrations in water samples. The maximum Pb(II) removal percentage of 100% was obtained with 50 mL of 5 mg/L Pd(II) ion solution and 0.20 g of the synthesized activated carbon. Adsorption data were well fitted with the Freundlich adsorption isotherm model, and adsorption kinetics were fitted with the pseudo-second-order kinetic model with <i>R</i><sup>2</sup> of 0.99. These results conclude that the synthesized activated carbon can be used as a potential sorbent for the removal of lead from wastewaters.
基金financially supported by the "Joint Fund(project number U1260202)for Iron and Steel Research"built by the National Natural Science Foundation of China and Baosteel Group Corporation
文摘This study investigated the volatilization kinetics of lead in pellets made of Zn-Pb-bearing dusts mixed with coal powder,in a nitrogen atmosphere and in the temperature range between 1 100 ℃ - 1 300℃ ,and showed that the reduction temperature has a significant effect on the volatilization rate of lead and that neither the particle size of the coal powder nor the extra carbon content has any effect on the volatilization rate. The obtained activation energy for the volatilization of lead is 88.74 kJ/mol. The volatilization rate of lead is controlled by both the lead evaporation reaction and the diffusion of gaseous lead through the gas boundary layer covering the surface of the reduced liquid lead.
基金Project supported by the Key Research and Development Program of China(Grant No.2020YFB1506400)the National Natural Science Foundation of China(Grant Nos.51922074,51673138,51820105003,and 22075194)+1 种基金the Tang Scholar,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FAPbI_(3) perovskite precursor solutions.Besides,the most efficient FAPbI_(3) layers are prepared by the spin-coating method,which is limited to the size of the device.Herein,the stability of FAPbI_(3) perovskite solution with methylammonium chloride(MACl)or cesium chloride(CsCl)additive is studied for preparing perovskite film through an upscalable blade-coating method.Each additive works well for achieving a high-quality FAPbI_(3) film,resulting in efficient carbon electrode perovskite solar cells(pero-SCs)in the ambient condition.However,the perovskite solution with MACl additive shows poor aging stability that noα-FAPbI_(3) phase is observed when the solution is aged over one week.While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pureα-FAPbI_(3) perovskite film even the solution is aged over one month.During the solution aging process,the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducingδ-phase FAPbI_(3).Whereas,replacing MACl with CsCl could effectively solve this issue.Our founding shows that there is a great need to develop a non-MACl FAPbI_(3) perovskite precursor solution for cost-effective preparation of pero-SCs.
文摘This study presents the elaboration of a simple and cheap electrode made by carbon paste introduced into a cavity of electrode body, and used for the lead traces determination in tap water. A potentiostatic pre-electrolysis at constant voltage enables the reduction of the lead (Pb2+) and the accumulation of the metallic lead at and into the carbon paste;the reoxidation of the Pb (Linear sweep voltammetry) leads to the anodic striping peak. The effect of the main operating parameters on the shape of the peak and the magnitude of the current was examined and their optimal values were determined. Then calibration was achieved and the method was successfully applied (using all the optimized parameters) to the determination of lead in water, with a detection limit of 0.138 μg·L-1. Compared to other methods (ICP-AES for example), the proposed method offers a satisfactory detection limit of the Pb2+ (0.138 μg·L-1) because of the important specific area of the carbon paste electrode, for a significantly lower cost. Besides, there is no observed loss in the electrode answer in terms of peak current, which means that there is no any irreversible steps nor deactivation of the electrode, even after ten successive measurements;only reduction of the lead followed by the deposit oxidation was observed at the electrode.
文摘Recently, many attempts have been made to use carbon nanotubes in analytical chemistry, especially in adsorption of heavy metal ions from water. In this study, multiwalled carbon nanotubes (MWCNTs) were functionalized with tris(2-aminoethyl) amine. The functionalized nanoparticles were characterized using Fourier transform infrared (FTIR), thermal gravimetric analyzer (TGA), elemental analysis, and Raman spectroscopy. The results revealed that the functionalization reaction was successfully accomplished. Lead adsorption from water was carried out using functionalized MWCNTs and measured by flame atomic absorption spectrometry (FAAS). The effects of pH, shaking time, initial metal ion concentration, and adsorbent dosage on the adsorption process were studied via batch method. The results obtained showed that removal of lead ions strongly depended on the pH. Desorption study revealed that lead ions adsorbed on the functionalized MWCNTs could be desorbed at pH 3 due to breakage of complexes formed on the sorbent surface. Maximum adsorption capacity of the sorbent under the optimal conditions was 43 mg/g. This favorable adsorption capacity suggests that functionalized carbon nanotubes can be applied for removal of lead from water solutions. The data obtained were fitted with the Langmuir and Freundlich isotherm adsorption models and Langmuir model showed better agreement with the experimental data.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575267,11775284,11575289 and 11605258
文摘Measurement of the neutron yield is performed at a primary energy of 400 MeV/u carbons for the Pb target.Water-bath activation-foil method is used in a moderation measurement with Au foils to detect the moderated neutrons. The neutron yield is determined to be 18.4±2.1 per carbon by integrating the neutron flux over the entire water volume. The corresponding simulation values are performed by Geant4 code with three models to compare with the experimental results. The comparison shows that the calculated result with the INCL model is in good agreement with the experimental data.
基金financially supported by the Guangdong Pearl River Talent Program (2021ZT09L400)National Natural Science Foundation of China (52072284, 21875178, 91963209)the Joint Funds of Natural Science Foundation of Hubei Province (2022CFD087)
文摘Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSCs with simplified device architecture and fabrication procedures could further enhance the competitive strength of PSC technology.In this work,we present an in-situ defect passivation(ISDP)assisted full-printing of high performance formamidine-lead bromide(FAPbBr_(3))PSCs.Only three rapid printing steps are involved for electron transporting layer(ETL),perovskite and carbon to form a complete solar cell on the low-cost fluorine-doped tin oxide(FTO)substrate.Long-chain polymer monomethyl ether polyethylene glycol is particularly utilized as the ISDP passivator,leading to conformal coating on the rough FTO and defect passivation for both ETL and perovskite during printing.A high efficiency of 10.85%(certified 10.14%)and a high V_(oc)up to 1.57 V are achieved for the printed device.The unencapsulated PSCs maintain above 90%of the initial efficiency after continuously heating at 85℃for 1000 h and over 80%of the efficiency after the maximum power point tracking for 3500 h.The fully printed semitransparent PSCs with carbon grids(CGs)show average visible light transmittance over 33%and an efficiency of 8.81%.
基金the Kulliyyah of Engineering(KOE) and Department of Biotechnology Engineering,IIUM for supporting and providing the laboratory facilities
文摘The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.