Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequenci...Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.展开更多
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of...An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.展开更多
特高频(ultra high frequency,UHF)局放检测是变压器油纸绝缘缺陷定位的常用方法,实际应用过程中局放定位准确性易受噪声和传感器布置方式影响。为保证变压器油纸绝缘缺陷局放定位检测有效性,文中首先建立油纸绝缘缺陷UHF局放定位检测平...特高频(ultra high frequency,UHF)局放检测是变压器油纸绝缘缺陷定位的常用方法,实际应用过程中局放定位准确性易受噪声和传感器布置方式影响。为保证变压器油纸绝缘缺陷局放定位检测有效性,文中首先建立油纸绝缘缺陷UHF局放定位检测平台,在常规K-means方法的基础上,提出基于修正聚类分界的变压器油纸绝缘缺陷局放抗干扰定位方法,有效降低了定位误差。然后针对样本聚类分界混叠问题,选择最优修正系数L为1.1时,UHF局放定位误差可减小至0.1 m内,验证了文中方法的有效性。最后分析不同传感器布置方式的定位误差变化规律,提出变压器油纸绝缘缺陷检测用UHF传感器优化布置方案,可为变压器局放在线监测传感器布置及定位提供参考。展开更多
High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research objec...High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.展开更多
The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insu...The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave, but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves, we analyzed the proportions between the TEM wave and the high order waves, as well as the influence of the PD position on this proportion, using the finite different time domain (FDTD) method. According to the unique characteristics of the waves, they are separated only ap- proximately. It is found that the high-order mode is the main component, more than 70%, of the electric field around the enclosure of GIS, and that with the increasing distance between PD source and inner conductors, the low frequency ( below about 800 MHz) component of EW decreases, but the high frequency component (above 1 GHz) increases, meanwhile the proportion of high-order components in EW could reach 77% from 70%. It concluded that the closer the PD source to the enclosure is, the easier high order EW may be excited.展开更多
The effect of frequency and sample shape on fatigue behaviors of DZ125 superalloy are systematically studied.The results show that fatigue fracture still occurs above the cycle of 10~8 for tests carried out at the fre...The effect of frequency and sample shape on fatigue behaviors of DZ125 superalloy are systematically studied.The results show that fatigue fracture still occurs above the cycle of 10~8 for tests carried out at the frequency of f=20 kHz and stress ratio R =-1,so the traditional fatigue limit at cycle of 10~7 is not appropriate for fatigue design.Fatigue fracture surfaces are perpendicular to stress axis for cylindrical and plate specimens,and the fatigue cracks originate from the extra surface of the specimens.Fatigue crack is apt to propagate from cutting direction to forward direction,which occurs mainly in the second propagation stage at higher stress amplitude. There is an obvious frequency effect for DZ125 superalloy.The higher the test frequency is,the more serious the effect of frequency on fatigue behaviors of the alloy.After the frequency correction,the ultra-high cycle fatigue S-N curve well coincide with the traditional fatigue S-N curve.展开更多
基金supported by the National Science Foundation of China(NSFC)(52075162)the Program of New and High-Tech Industry of Hunan Province(2020GK2015 and 2021GK4014)+5 种基金the Excellent Youth Fund of Hunan Province(2021JJ20018)the Key Program of Guangdong(2020B0101040002)the Joint Fund of the Ministry of Education(Young Talents)the Natural Science Foundation of Changsha(kq2007026)the Tianjin Enterprise Science and Technology Commissioner Project(19JCTPJC56200)the Engineering Physics and Science Research Council of the United Kingdom(EPSRC EP/P018998/1).
文摘Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.
基金Supported by the National Science and Technology Major Project of China(2012ZX04003081)
文摘An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.
文摘特高频(ultra high frequency,UHF)局放检测是变压器油纸绝缘缺陷定位的常用方法,实际应用过程中局放定位准确性易受噪声和传感器布置方式影响。为保证变压器油纸绝缘缺陷局放定位检测有效性,文中首先建立油纸绝缘缺陷UHF局放定位检测平台,在常规K-means方法的基础上,提出基于修正聚类分界的变压器油纸绝缘缺陷局放抗干扰定位方法,有效降低了定位误差。然后针对样本聚类分界混叠问题,选择最优修正系数L为1.1时,UHF局放定位误差可减小至0.1 m内,验证了文中方法的有效性。最后分析不同传感器布置方式的定位误差变化规律,提出变压器油纸绝缘缺陷检测用UHF传感器优化布置方案,可为变压器局放在线监测传感器布置及定位提供参考。
基金financially supported by the National Natural Science Foundation of China (Grant No. 51705132)the Science and Technology Department of Henan Province Natural Science Project (Grant No. 172102210215)+1 种基金Henan Postdoctoral Foundation, doctoral Foundation (2016BS008)the Education Department of Henan Province Natural Science Project (Grant No. 17A460008)
文摘High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.
基金Project supported by National High-tech Research and Development Program of China (863 Program) (2011AA05A121)
文摘The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for ap- plying UHF method to partial discharge (PD) detection. Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave, but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves, we analyzed the proportions between the TEM wave and the high order waves, as well as the influence of the PD position on this proportion, using the finite different time domain (FDTD) method. According to the unique characteristics of the waves, they are separated only ap- proximately. It is found that the high-order mode is the main component, more than 70%, of the electric field around the enclosure of GIS, and that with the increasing distance between PD source and inner conductors, the low frequency ( below about 800 MHz) component of EW decreases, but the high frequency component (above 1 GHz) increases, meanwhile the proportion of high-order components in EW could reach 77% from 70%. It concluded that the closer the PD source to the enclosure is, the easier high order EW may be excited.
文摘The effect of frequency and sample shape on fatigue behaviors of DZ125 superalloy are systematically studied.The results show that fatigue fracture still occurs above the cycle of 10~8 for tests carried out at the frequency of f=20 kHz and stress ratio R =-1,so the traditional fatigue limit at cycle of 10~7 is not appropriate for fatigue design.Fatigue fracture surfaces are perpendicular to stress axis for cylindrical and plate specimens,and the fatigue cracks originate from the extra surface of the specimens.Fatigue crack is apt to propagate from cutting direction to forward direction,which occurs mainly in the second propagation stage at higher stress amplitude. There is an obvious frequency effect for DZ125 superalloy.The higher the test frequency is,the more serious the effect of frequency on fatigue behaviors of the alloy.After the frequency correction,the ultra-high cycle fatigue S-N curve well coincide with the traditional fatigue S-N curve.