The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been l...The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been largely neglected.This study examined the effect of varying monitoring frequencies on the accuracy of displacement predictions by using the Baijiabao landslide in the Three Gorges Reservoir Area(TGRA)as a case study.We collected surface automatic monitoring data at different intervals,ranging from daily to monthly.The Ensemble Empirical Mode Decomposition(EEMD)algorithm was utilized to dissect the accumulated displacements into periodic and trend components at each monitoring frequency.Polynomial fitting was applied to forecast the trend component while the periodic component was predicted with two state-of-the-art neural network models:Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU).The predictions from these models were integrated to derive cumulative displacement forecasts,enabling a comparative analysis of prediction accuracy across different monitoring frequencies.The results demonstrate that the proposed models achieve high accuracy in landslide displacement forecasting,with optimal performance observed at moderate monitoring intervals.Intriguingly,the daily mean average error(MAE)decreases sharply with increasing monitoring frequency,reaching a plateau.These findings were corroborated by a parallel analysis of the Bazimen landslide,suggesting that moderate monitoring intervals of approximately 7 to 15 days are most conducive to achieving enhanced prediction accuracy compared to both daily and monthly intervals.展开更多
A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationsh...A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.展开更多
This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was p...This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was performed through the double-difference phase, using the adjusted interferometry technique (i.e. phase residue method—PRM®). In the method, the double-difference phase of the carrier L1 is realized by using two satellites only, one was positioned at the zenith of the structure and the other satellite was positioned near the horizon. The results of the parametric adjustment of the PRM observations were finalized through software Interferometry, mathematical algorithm were applied and compared with the accelerometer. The comparison served to validate the use of GPS as a fast and reliable instrument for the preliminary monitoring of the dynamic behavior of the bridge, road artworks which are common in several countries, especially in the Brazilian road network. The data time series from the GPS and accelerometers were processed using the Wavelet. The detection of frequencies means that the combination of 100 Hz GPS receivers and the PRM allows detecting vibrations up to 5 mm. It presented significant results which were never obtained by the Fourier Transform.展开更多
Visual real-time monitoring is the premise of low frequency oscillation control in power grids. This paper showed a visual method for the control center of power grids to monitor low frequency oscillation. It processe...Visual real-time monitoring is the premise of low frequency oscillation control in power grids. This paper showed a visual method for the control center of power grids to monitor low frequency oscillation. It processed the PMU real-time data with incomplete S-transform, and converted the waveforms to two-dimensional time-frequency figures which showed the initial time, frequency and amplitude of each low frequency oscillation mode directly. GPU was used to show figures and calculate FFT with the purpose of improving calculation efficiency. The results of practical cases show that the real-time characters of low frequency oscillation can be identified availably by this visualization real-time monitoring method which is helpful and suitable for practical application.展开更多
In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling techniqu...In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.展开更多
Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizo...Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizontal floating platform including a horizontal floating cable, vertical mooring cable and floating main body is proposed and described in this paper. It has the advantages of good maneuverability along with the current and multi-stage vibration isolation. The main application of this platform is to measure the ocean ambient noise coming from the wave fluctuation and the deterministic acoustic signals such as aquatic organisms, underwater targets and sailing vehicles. The influence of the current fluctuation on the attitude angle and flow induced vibration of cables and main body are analyzed with some previous sea test data. Moreover, the comparison between the vertical type platform used before and the horizontal type platform is also discussed. It is concluded that there is obvious relevance between the attitude angle and ocean current variation. Meanwhile, the abnormal influence on the main body is caused by the vibration transmission from the fluctuation of cables. There will be the influence on the accuracy of the acoustic measurement above 100 Hz, and the inherent vibration characteristic of the main body is the primary reason.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of...An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.展开更多
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established tec...To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS.展开更多
Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact z...Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact zones of the Xiaowan ultra-high arch dam. The principles of monitoring layout and design are introduced in detail. Prototype monitoring shows that the increment of the interfacial compressive stress is much larger in the impoundment stage than in the regulating stage. The water pressure and time-effect are two main factors affeeting the interfacial stress. The time-effect is the key factor in the initial impoundment stage, and the water pressure is the key factor after impoundment. The contact properties are significantly improved by grouting. This study shows that there are three typical stages in the joint opening hydrographs, namely the compression stage, opening stage, and stable stage. There is a nonlinear relationship between the joint opening and temperature, which can be well described by the S-function. In conclusion, the reinforcement effect is satisfying, and the abutment is safe.展开更多
This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperatur...This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.展开更多
Monitoring tire pressure of cars and signaling abnormal conditions is an important means to prevent deadly accidents. Large achievements have been gained, especially in direct tire pressure monitoring system(TPMS). ...Monitoring tire pressure of cars and signaling abnormal conditions is an important means to prevent deadly accidents. Large achievements have been gained, especially in direct tire pressure monitoring system(TPMS). But there has been rarely research on indirect TPMS in the world. In China, the research on indirect TPMS is almost lacking. The international research on the indirect monitoring tire pressure method is mainly based on measuring and comparing the rotating speed of wheels. But it is very difficult to measure wheel rotating speed accurately because of the influence of many random factors. In this paper, the authors propose a new method in which the tire pressure can be monitored indirectly. This method can be used for tire calibration, wheel speed frequency standardization, wheel speed frequency comparison, and abnormal tire pressure determination. The pulse frequencies from wheel speed sensors of ABS are used to indicate tire deformation. Because the frequency has a relationship with tire deformation, the tire deformation reflects the tire pressure. Small sample statistics is used in the new method to increase the accuracy, and the experimental samples using the principle of the new method have been made and tested. The result of vehicle tests on road demonstrates that the method is efficient and accurate to monitor tire pressure. The research has positive potential for developing products.展开更多
Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequenci...Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.展开更多
High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research objec...High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.展开更多
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv...The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.展开更多
In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric p...In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters.This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system.As a result,we draw the relationship between the electric parameters(voltage and current)and power frequency.Then,the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures,and the values of the electric parameters are related to the features of the dynamic figures.Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor(VFM)and the features of the plotted dynamic figures including area of diagram,area of bounding rectangle,tilt angle,etc.Finally,the effectiveness of the proposed method is verified by two cases,in which the speed of VFM and the load of VVVF hydraulic system are changed.The results show that the increase of the speed of VFM enhances its three-phase electric power,but reduces the tilt angle of the plotted dynamic figures.In addition,as the load of VVVF hydraulic system is increased,the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased.This paper provides a new way to online monitor the running state of VVVF hydraulic system.展开更多
This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage ide...This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage identification has been rapidly expanding over the last few decades.The basic idea behind this technology is that modal parameters(notably frequencies,mode shapes,and modal damping)are functions of the physical properties of the structure(mass,damping,and sifies).Therefore,changes in the physical properties will cause changes in the modal proper-ties which could be obtained by structural health monitoring(SHM).Updating is a process fraught with numerical difficulties.These arise from inaccuracy in the model and imprecision and lack of information in the measurements,mainly taken place in joints and critical points.The motivation for the development of this technology is.presented,methods are categorized according to various criteria such as the level of damage detection provided from vibration testing,natural frequency and mode shape readings are then obtained by using modal analysis techniques,which are used for updating structural parameters of the associated finite element model The experi-mental studies for the laboratory tested bridge model show that the proposed model.updating using ME scope technique can provide reasonable model updating results.展开更多
The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitori...The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.展开更多
The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical mode...The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.展开更多
High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case...High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.展开更多
基金supported by the Open Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)of the Ministry of Education(Grant Nos.2022KDZ14 and 2022KDZ15)the Open Fund of Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202304)+3 种基金the Science and Technology Project of Department of Natural Resources of Hubei Province(Grant No.ZRZY2024KJ15)the Natural Science Foundation of Hubei Province(Grant No.2022CFB557)the National Natural Science Foundation of China(Grant No.42107489)the 111 Project of Hubei Province(Grant No.2021EJD026)。
文摘The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been largely neglected.This study examined the effect of varying monitoring frequencies on the accuracy of displacement predictions by using the Baijiabao landslide in the Three Gorges Reservoir Area(TGRA)as a case study.We collected surface automatic monitoring data at different intervals,ranging from daily to monthly.The Ensemble Empirical Mode Decomposition(EEMD)algorithm was utilized to dissect the accumulated displacements into periodic and trend components at each monitoring frequency.Polynomial fitting was applied to forecast the trend component while the periodic component was predicted with two state-of-the-art neural network models:Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU).The predictions from these models were integrated to derive cumulative displacement forecasts,enabling a comparative analysis of prediction accuracy across different monitoring frequencies.The results demonstrate that the proposed models achieve high accuracy in landslide displacement forecasting,with optimal performance observed at moderate monitoring intervals.Intriguingly,the daily mean average error(MAE)decreases sharply with increasing monitoring frequency,reaching a plateau.These findings were corroborated by a parallel analysis of the Bazimen landslide,suggesting that moderate monitoring intervals of approximately 7 to 15 days are most conducive to achieving enhanced prediction accuracy compared to both daily and monthly intervals.
基金the National Key Research and Development Program of China(Grant No.2018YFB1801003)the National Natural Science Foundation of China(Grant Nos.61525501 and 61827817)the Beijing Natural Science Foundation,China(Grant No.4192022).
文摘A scheme for instantaneous frequency measurement(IFM)using two parallel I/Q modulators based on optical power monitoring is proposed.The amplitude comparison function(ACF)can be constructed to establish the relationship between the frequency of radio frequency(RF)signal and the power ratio of two optical signals output by two I/Q modulators.The frequency of RF signal can be derived by measuring the optical power of the optical signals output by two I/Q modulators.The measurement range and measurement error can be adjusted by controlling the delay amount of the electrical delay line.The feasibility of the scheme is verified,and the corresponding measurement range and measurement error of the system under different delay amounts of the electrical delay line are given.Compared with previous IFM schemes,the structure of this scheme is simple.Polarization devices,a photodetector and an electrical power meter are not used,which reduces the impact of the environmental disturbance on the system and the cost of the system.In simulation,the measurement range can reach 0 GHz-24.5 GHz by adjusting the delay amount of the electrical delay lineτ=20 ps.The measurement error of the scheme is better at low frequency,and the measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz.
文摘This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was performed through the double-difference phase, using the adjusted interferometry technique (i.e. phase residue method—PRM®). In the method, the double-difference phase of the carrier L1 is realized by using two satellites only, one was positioned at the zenith of the structure and the other satellite was positioned near the horizon. The results of the parametric adjustment of the PRM observations were finalized through software Interferometry, mathematical algorithm were applied and compared with the accelerometer. The comparison served to validate the use of GPS as a fast and reliable instrument for the preliminary monitoring of the dynamic behavior of the bridge, road artworks which are common in several countries, especially in the Brazilian road network. The data time series from the GPS and accelerometers were processed using the Wavelet. The detection of frequencies means that the combination of 100 Hz GPS receivers and the PRM allows detecting vibrations up to 5 mm. It presented significant results which were never obtained by the Fourier Transform.
文摘Visual real-time monitoring is the premise of low frequency oscillation control in power grids. This paper showed a visual method for the control center of power grids to monitor low frequency oscillation. It processed the PMU real-time data with incomplete S-transform, and converted the waveforms to two-dimensional time-frequency figures which showed the initial time, frequency and amplitude of each low frequency oscillation mode directly. GPU was used to show figures and calculate FFT with the purpose of improving calculation efficiency. The results of practical cases show that the real-time characters of low frequency oscillation can be identified availably by this visualization real-time monitoring method which is helpful and suitable for practical application.
文摘In order to eliminate the influence of frequency change on real-time voltage acquisition,a low-cost solution of voltage monitoring was proposed using the multi-channel DMA synchronous frequency trace-sampling technique.In-chip resources of the designed voltage monitor were fully utilized in hardware design to reduce external devices.The MQX RTOS was used to perform the functional tasks flexibly and efficiently;especially the Ethernet communication applications and USB device connection were realized using its TCP/IP protocol stack and USB driver.In addition,to ensure the safety of electrical records,data statistics and alarm information management were also implemented through the management of the storage in FLASH.The test results show that the voltage monitor designed in this paper has the advantages of accurate measurement,strong resistance to frequency interference and low cost,and can be widely applied in the field of voltage monitoring in distribution networks.
基金financially supported by the National Natural Science Foundation of China(Grant No.61801275)Major Science and Technology Innovation This work is financially supported by the Stable Supporting Fund of Acoustic Science and Technology Laboratory(Grant No.SSJSWDZC2018014)+3 种基金the Major Science and Technology Innovation Project of Shandong Province(Grant No.2018YFJH0707)the Key Research and Development Plan(International Cooperation)Project of Shandong Province(Grant No.2018JHZ002)the International Science and Technology Cooperation Project of Shandong Academy of Sciences(Grant No.2019GHZD01)the provincial Key Research and Development Program of Shandong(Military and Civilian Integration)(Grant No.2016JMRH0541)
文摘Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizontal floating platform including a horizontal floating cable, vertical mooring cable and floating main body is proposed and described in this paper. It has the advantages of good maneuverability along with the current and multi-stage vibration isolation. The main application of this platform is to measure the ocean ambient noise coming from the wave fluctuation and the deterministic acoustic signals such as aquatic organisms, underwater targets and sailing vehicles. The influence of the current fluctuation on the attitude angle and flow induced vibration of cables and main body are analyzed with some previous sea test data. Moreover, the comparison between the vertical type platform used before and the horizontal type platform is also discussed. It is concluded that there is obvious relevance between the attitude angle and ocean current variation. Meanwhile, the abnormal influence on the main body is caused by the vibration transmission from the fluctuation of cables. There will be the influence on the accuracy of the acoustic measurement above 100 Hz, and the inherent vibration characteristic of the main body is the primary reason.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金Supported by the National Science and Technology Major Project of China(2012ZX04003081)
文摘An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.
基金Supported by the project of Sanya Yazhou Bay Science and Technology City (Grant No:SCKJ-JYRC-2022-14)。
文摘To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS.
基金supported by the National Natural Science Foundation of China(Grant No51139001)the Natural Science Foundation of Jiangsu Province(Grant NoBK2009479)+2 种基金the Scientific Research Foundation of the State Human Resource Ministry for Returned Chinese Scholars(Grant No2009003)the Scientific Research Foundation for Doctors in Jiangsu Enterprises(Grant No2011-33)the Jiangsu Provincial Postdoctoral Sustentation Fund(Grant No1101049C)
文摘Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact zones of the Xiaowan ultra-high arch dam. The principles of monitoring layout and design are introduced in detail. Prototype monitoring shows that the increment of the interfacial compressive stress is much larger in the impoundment stage than in the regulating stage. The water pressure and time-effect are two main factors affeeting the interfacial stress. The time-effect is the key factor in the initial impoundment stage, and the water pressure is the key factor after impoundment. The contact properties are significantly improved by grouting. This study shows that there are three typical stages in the joint opening hydrographs, namely the compression stage, opening stage, and stable stage. There is a nonlinear relationship between the joint opening and temperature, which can be well described by the S-function. In conclusion, the reinforcement effect is satisfying, and the abutment is safe.
基金National Natural Science Foundation of China Under Grant No.50725828 & No.50808041PhD Programs Foundation of Ministry of Education of China Under Grant No. 200802861011Scientific Research Foundation of Graduate School of Southeast University Under Grant No.YBJJ0923
文摘This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.
基金supported by the Opening Foundation of State Key Laboratory of Automobile Safety and Energy,Tsinghua University,China(Grant No. KF2005-11,Grant No.KF2007-09)
文摘Monitoring tire pressure of cars and signaling abnormal conditions is an important means to prevent deadly accidents. Large achievements have been gained, especially in direct tire pressure monitoring system(TPMS). But there has been rarely research on indirect TPMS in the world. In China, the research on indirect TPMS is almost lacking. The international research on the indirect monitoring tire pressure method is mainly based on measuring and comparing the rotating speed of wheels. But it is very difficult to measure wheel rotating speed accurately because of the influence of many random factors. In this paper, the authors propose a new method in which the tire pressure can be monitored indirectly. This method can be used for tire calibration, wheel speed frequency standardization, wheel speed frequency comparison, and abnormal tire pressure determination. The pulse frequencies from wheel speed sensors of ABS are used to indicate tire deformation. Because the frequency has a relationship with tire deformation, the tire deformation reflects the tire pressure. Small sample statistics is used in the new method to increase the accuracy, and the experimental samples using the principle of the new method have been made and tested. The result of vehicle tests on road demonstrates that the method is efficient and accurate to monitor tire pressure. The research has positive potential for developing products.
基金supported by the National Science Foundation of China(NSFC)(52075162)the Program of New and High-Tech Industry of Hunan Province(2020GK2015 and 2021GK4014)+5 种基金the Excellent Youth Fund of Hunan Province(2021JJ20018)the Key Program of Guangdong(2020B0101040002)the Joint Fund of the Ministry of Education(Young Talents)the Natural Science Foundation of Changsha(kq2007026)the Tianjin Enterprise Science and Technology Commissioner Project(19JCTPJC56200)the Engineering Physics and Science Research Council of the United Kingdom(EPSRC EP/P018998/1).
文摘Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO_(3)/SiO_(2)/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51705132)the Science and Technology Department of Henan Province Natural Science Project (Grant No. 172102210215)+1 种基金Henan Postdoctoral Foundation, doctoral Foundation (2016BS008)the Education Department of Henan Province Natural Science Project (Grant No. 17A460008)
文摘High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793
文摘The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.
基金National Natural Science Foundation of China(No.51675399)
文摘In order to online monitor the running state of variable voltage and variable frequency(VVVF)hydraulic system,this paper presents a graphic monitoring method that fuses the information of variable frequency electric parameters.This paper first analyzes how the voltage and current of the motor stator change with the operation conditions of VVVF hydraulic system.As a result,we draw the relationship between the electric parameters(voltage and current)and power frequency.Then,the signals of the voltage and current are fused as dynamic figures based on the idea of Lissajous figures,and the values of the electric parameters are related to the features of the dynamic figures.Rigorous theoretical analysis establishes the function between the electric power of the variable frequency motor(VFM)and the features of the plotted dynamic figures including area of diagram,area of bounding rectangle,tilt angle,etc.Finally,the effectiveness of the proposed method is verified by two cases,in which the speed of VFM and the load of VVVF hydraulic system are changed.The results show that the increase of the speed of VFM enhances its three-phase electric power,but reduces the tilt angle of the plotted dynamic figures.In addition,as the load of VVVF hydraulic system is increased,the three-phase electric power of VFM and the tilt angle of the plotted dynamic figures are both increased.This paper provides a new way to online monitor the running state of VVVF hydraulic system.
文摘This paper provides a model updating approach to detect,locate,and char-acterize damage in structural and mechanical systems by examining changes in mea-sured vibration responses.Research in vibration-based damage identification has been rapidly expanding over the last few decades.The basic idea behind this technology is that modal parameters(notably frequencies,mode shapes,and modal damping)are functions of the physical properties of the structure(mass,damping,and sifies).Therefore,changes in the physical properties will cause changes in the modal proper-ties which could be obtained by structural health monitoring(SHM).Updating is a process fraught with numerical difficulties.These arise from inaccuracy in the model and imprecision and lack of information in the measurements,mainly taken place in joints and critical points.The motivation for the development of this technology is.presented,methods are categorized according to various criteria such as the level of damage detection provided from vibration testing,natural frequency and mode shape readings are then obtained by using modal analysis techniques,which are used for updating structural parameters of the associated finite element model The experi-mental studies for the laboratory tested bridge model show that the proposed model.updating using ME scope technique can provide reasonable model updating results.
基金Financial Support by the Pars Oil and Gas Company(Grant No. 88-065)
文摘The development of damage detection techniques for offshore jacket structures is vital to prevent catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In efforts to fulfill this task, concept of the minimum rank perturbation theory has been utilized. The present article introduces a promising methodology to select frequency points effectively. To achieve this goal, modal strain energy ratio of each member was evaluated at different natural frequencies of structure in order to identify the sensitive frequency domain for damage detection. The proposed methodology opens up the possibility of much greater detection efficiency. In addition, the performance of the proposed method was evaluated in relation to multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform, and the results proved to be satisfactory utilizing the proposed methodology.
文摘The purpose of the study is to generate traffic air information system) to determine a proper zone of AQMS (air analyzed were carbon monoxide (CO), and nitrogen oxides (NOx) pollution map using mathematical model and GIS (geographic quality monitoring station) in municipality area. The pollutants which can be harmful to people living in the area. The three steps of mapping process were performed under the GIS environment using the existing vehicle emission rates and pollutant dispersion model. First, traffic volume, road network, and the emission rates of road segments varying with types of vehicle were collected from existing data. Second, the pollutant concentrations were calculated by use of CALINE4, a tool with Gaussian dispersion model. The model parameters include emission rate, wind directions and speeds, ambient temperature and observed pollutant concentration, and atmospheric stability during all seasons from the January 1, 2010 to May 31,2011 with regardless the rainy season. This resulted in concentrations at many receptor points along links of the road network. Third, distributions of pollution concentrations were generated by means of the spatial interpolation of those from receptors. The results of pollution raster-based maps are used for determining frequency of violence and combined pollution map. The resulting frequency of violence and intensity concentration will be further integrated to determine a potential area of AQMS. Finally, achieving pollution potential area of AQMS can be located as helpful basic data for efficient traffic and transportation planning.
基金the Austrian Academy of Sciences(OeAW)for funding the landslide monitoring project for several yearsthe Austrian Federal Railways(OBB)for the funding of the geogrid monitoring project,especially the participating departments of OBB-Infrastruktur AG:Tunneling,Surveying and Data Management,Research and Development
文摘High-sensitivity monitoring solutions are crucial for early warning systems of earth structures. In this paper, we discuss the design and implementation of such systems for natural and engineered slopes using two case studies. At the Gradenbach Observatory, one key element of the monitoring system is a large fiber optic strain rosette embedded in the slope. We demonstrate that the strain rosette can depict landslide deformations much earlier than geodetic sensors like GPS or total stations and is therefore well suitable for an early warning system. In a second application we report the construction of a reinforced earth structure using geogrids. A distributed fiber optic measurement system was installed to measure the current operating grade of the geogrids within the earth structure. About 2 km of Brillouin sensing cables were installed in the project area. It is demonstrated that the developed monitoring system is well suited for assessing the current state of health of reinforced earth structures.