This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connecte...This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.展开更多
In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/Ou, He, ...In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/Ou, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 rain is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.展开更多
The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The ...The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.展开更多
The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen...The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.展开更多
Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-stat...Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.展开更多
The influences of ultra-high hydrostatic pressure treatment on foaming and physical properties (solubility, hydrophobicity and sulfhydryl content) of egg white were investigated. A pressure range of 0-500 MPa, time ra...The influences of ultra-high hydrostatic pressure treatment on foaming and physical properties (solubility, hydrophobicity and sulfhydryl content) of egg white were investigated. A pressure range of 0-500 MPa, time range of 0-20 min and pH range of 7.5-8.5 were selected. The foaming property of egg white is improved by 350Mpa and 10min. The treatment resulted in in- crease of sulfhydryl content of egg white, while solubility and hydrophobicity were significantly decreased.展开更多
Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structu...Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.展开更多
Amino acids have been extracted from Hairtail surimi using enzymes in an ultra-high pressure bioreactor. The extraction efficiency of different enzymes including papain, trypsin, and proteases (acid, neutral, alkaline...Amino acids have been extracted from Hairtail surimi using enzymes in an ultra-high pressure bioreactor. The extraction efficiency of different enzymes including papain, trypsin, and proteases (acid, neutral, alkaline) also has been evaluated, and it has been discovered that neutral protease behaved the best. The amino acids were analyzed using automatic amino acid analyzer, and the enzymatic digestion conditions were optimized. For neutral protease, the optimal condition was 50℃, 250 MPa, pH 7.0. Material to liquid ratio of enzyme is 6%. More than 29 amino acids were detected after 24 hours of hydrolysis;the enzymatic hydrolysis rate can reach 83.29%. The results show that enzymatic digestion under ultra-high-pressure provides a very promising approach to extract amino acids from Hairtail surimi.展开更多
The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In thi...The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In this study, we investigate the thermal structure of collisional orogen as a slab of continental lithosphere being subducted beneath an overriding wedge of continental lithosphere by the 2 D finite element method. The advection heat transfer due to the accretion of orogenic wedge is considered. The wedge is composed of the upper crust materials through the accretion from the down going plate to the upper plate. For identifying the significance of the geometric and/or kinetic factors on the thermal structure of continental subduction, the different combinations of parameters, including dip angle of subduction zone, accretion or erosion rates, and the convergence velocity etc., are used in modelling. The time span of continental subduction in our calculation is less than 30 Ma, according to the short duration of ultra deep subduction of continental slab suggested by the preservation of metastable pre peak low pressure mineralogy assemblage in the garnet of UHP rocks. Therefore, the steep dip angle of down going plate and/or low rate of accretion favour the ultra deep subduction of upper crust materials, especially for the slower down going slab. Meanwhile, taking the erosion rate as the level of exhumation rate of UHP rocks in some orogens (i.e., 1-2 km/Ma or more) does not result in the anatexis melting of crust of the overriding plate, due to the cooling effect of the rapid down going slab. However, the temperature structures of all models are generally cooler than those recovered by thermobarometric studies of the UHP rocks. This implies the significant increase of temperature after the rapid subduction of continental slab. Following the method of Davies and von Blackenburg (1998), we show that the slab breakoff can occur at the depth exceeding 100 km. Thermal modelling on the post subduction stage shows the heating related to the plate breakoff can cause the higher temperature recorded by the exhumed UHP rocks. The higher geotherm during post subduction stage leads to the weak strength of the orogenic wedge, and favours the faster upward movement of the UHP rock slices as ductile agents. The lower temperature gradient of the subduction slab predicted by modelling suggests the cold subducting slab could have transported significant fluids to mantle depth, not released during subduction. Accordingly, the absence of coeval calc alkalic magmatism in UHP orogens might resulted from the lower temperature as well as the fluid free circumstance, both are related to the rapid subduction of cold plate. Therefore, shear heating is not needed for explanation the thermal evolution of UHP orogen. On the other hand, the post collisional or late stage granitic plutonism is closely related to the deep seated heat producing materials of the accretion wedge.展开更多
An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical ...An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.展开更多
The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.How...The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.展开更多
The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition...The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition,increased total dietary fiber and soluble dietary fiber from pomelo fruitlets,especially at 400 MPa where soluble dietary fiber was greatly increased from 32.49%±0.23%to 41.92%±0.32%as compared to native one(p<0.05).Besides,ultra-high pressure treatment enhanced water-and oil-holding capacity,as well as swelling capacity of dietary fiber,which were related to its more porous structure and hydrophobic groups.Crystallinity and thermal stability of ultra-high pressure modified dietary fibers increased.Moreover,ultra-high pressure modified dietary fibers possessed stronger bile acid binding and pancreatic lipase inhibition capacities,suggesting its better potential in vitro hypolipidemic activity.Our findings suggested that ultra-high pressure treatment is a promising method to obtain dietary fiber with excellent functional properties,and can provide a basis for the high-value utilization of pomelo fruitlets as functional food with blood-lipid regulation.展开更多
Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring...Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring structure for higher EM resonances.Herein,we proposed a novel technique called cyclic pulsating pressure enhanced segregating structuration(CPP-SS),which can reinforce these two factors simultaneously.The structural information was supplied by optical microscopy(OM)and scanning electron microscopy(SEM),both of which confirmed the formation and evolution of segregate structured ultra-high molecular weight polyethylene(UHMWPE)/graphene composites.Then,the result showed that CPP-SS can significantly improve theσof samples.Ultimately,advanced specific EMI shielding efficiency of 31.1 d B/mm was achieved for UHMWPE/graphene composite at 1-mm thickness and a low graphene loading of 5 wt%.Meanwhile,it also confirmed that the intrinsic disadvantage of poor mechanical properties of conventional segregated structure composites can be surpassed.This work is believed to provide a fundamental understanding of the structural and performance evolutions of segregated structured composites prepared under CPPSS,and to bring us a simple and efficient approach for fabricating high-performance,strong and light-weight polymeric EMI shields.展开更多
High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor ...High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.展开更多
Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection an...Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods(PPRPH).In this study,we evaluated the effect of vaporized hydrogen peroxide(VHP)on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment,especially protective equipment with an electric supply system.A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment,and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber.The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow(the amount of VHP)and disinfection was investigated.Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure.No surviving Geobacillus stearothermophilus ATCC 7953,both inside and outside of these disinfected PPRPHs,could be observed after a 60 min treatment with an air flow of 10.5–12.3 m^(3)/h.Both function and material physical properties of these PPRPHs met the working requirements after disinfection.This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP.The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m^(3)/h,and provides a potential solution for the disinfection of various kind of protective equipment.展开更多
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and...Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.展开更多
浴缸形状的失效率函数因其能够捕捉某些实际情境中的故障率特征,在机械结构可靠性分析中至关重要。引入一种修正广义幂威布尔(Modified Power Generalized Weibull,MPGW)分布,能够建模表征浴缸形状的失效率变化规律。为评估该模型的有效...浴缸形状的失效率函数因其能够捕捉某些实际情境中的故障率特征,在机械结构可靠性分析中至关重要。引入一种修正广义幂威布尔(Modified Power Generalized Weibull,MPGW)分布,能够建模表征浴缸形状的失效率变化规律。为评估该模型的有效性,本研究使用了压力蒸汽灭菌器故障数据集进行实证研究,并将其性能与5种经典分布模型进行了比较,发现该模型在灵活性上具有较大优势。展开更多
文摘This paper reports that a new plasma generator at atmospheric pressure, which is composed of two homocentric cylindrical all-metal tubes, successfully generates a cold plasma jet. The inside tube electrode is connected to ground, the outside tube electrode is connected to a high-voltage power supply, and a dielectric layer is covered on the outside tube electrode. When the reactor is operated by low-frequency (6 kHz-20 kHz) AC supply in atmospheric pressure and argon is steadily fed as a discharge gas through inside tube electrode, a cold plasma jet is blown out into air and the plasma gas temperature is only 25-30℃. The electric character of the discharge is studied by using digital real-time oscilloscope (TDS 200-Series), and the discharge is capacitive. Preliminary results are presented on the decontamination of E.colis bacteria and Bacillus subtilis bacteria by this plasma jet, and an optical emission analysis of the plasma jet is presented in this paper. The ozone concentration generated by the plasma jet is 1.0× 10^16cm^-3 which is acquired by using the ultraviolet absorption spectroscopy.
文摘In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/Ou, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 rain is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11665005,11505032,11547139,51672249,and 11565003)the Zhejiang Natural Science Foundation of China(Grant No.LY16A050002)+3 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20161BAB211026,20171ACB21049,and 20171BAB211012)the Science and Technology Project of Jiangxi Provincial Department of Education,China(Grant No.GJJ150981)the Program for Innovative Research Team of Zhejiang Sci-Tech University,Chinathe Opening Foundation of Insititue of Textile Technology,Wuhan Texitle Universitiy,China(Grant No.GCZX201702)
文摘The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.
文摘The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.
基金Supported by the Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)the Natural Science Foundation of Fujian Province(2012J01081)+1 种基金the Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time.
文摘The influences of ultra-high hydrostatic pressure treatment on foaming and physical properties (solubility, hydrophobicity and sulfhydryl content) of egg white were investigated. A pressure range of 0-500 MPa, time range of 0-20 min and pH range of 7.5-8.5 were selected. The foaming property of egg white is improved by 350Mpa and 10min. The treatment resulted in in- crease of sulfhydryl content of egg white, while solubility and hydrophobicity were significantly decreased.
基金Supported by the 2015 Industrial Transformation and Upgrading of Strong Base Project(TC150B5C0-29)the National Key Basic Research Program of China(2014CB046400)
文摘Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system.
文摘Amino acids have been extracted from Hairtail surimi using enzymes in an ultra-high pressure bioreactor. The extraction efficiency of different enzymes including papain, trypsin, and proteases (acid, neutral, alkaline) also has been evaluated, and it has been discovered that neutral protease behaved the best. The amino acids were analyzed using automatic amino acid analyzer, and the enzymatic digestion conditions were optimized. For neutral protease, the optimal condition was 50℃, 250 MPa, pH 7.0. Material to liquid ratio of enzyme is 6%. More than 29 amino acids were detected after 24 hours of hydrolysis;the enzymatic hydrolysis rate can reach 83.29%. The results show that enzymatic digestion under ultra-high-pressure provides a very promising approach to extract amino acids from Hairtail surimi.
文摘The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In this study, we investigate the thermal structure of collisional orogen as a slab of continental lithosphere being subducted beneath an overriding wedge of continental lithosphere by the 2 D finite element method. The advection heat transfer due to the accretion of orogenic wedge is considered. The wedge is composed of the upper crust materials through the accretion from the down going plate to the upper plate. For identifying the significance of the geometric and/or kinetic factors on the thermal structure of continental subduction, the different combinations of parameters, including dip angle of subduction zone, accretion or erosion rates, and the convergence velocity etc., are used in modelling. The time span of continental subduction in our calculation is less than 30 Ma, according to the short duration of ultra deep subduction of continental slab suggested by the preservation of metastable pre peak low pressure mineralogy assemblage in the garnet of UHP rocks. Therefore, the steep dip angle of down going plate and/or low rate of accretion favour the ultra deep subduction of upper crust materials, especially for the slower down going slab. Meanwhile, taking the erosion rate as the level of exhumation rate of UHP rocks in some orogens (i.e., 1-2 km/Ma or more) does not result in the anatexis melting of crust of the overriding plate, due to the cooling effect of the rapid down going slab. However, the temperature structures of all models are generally cooler than those recovered by thermobarometric studies of the UHP rocks. This implies the significant increase of temperature after the rapid subduction of continental slab. Following the method of Davies and von Blackenburg (1998), we show that the slab breakoff can occur at the depth exceeding 100 km. Thermal modelling on the post subduction stage shows the heating related to the plate breakoff can cause the higher temperature recorded by the exhumed UHP rocks. The higher geotherm during post subduction stage leads to the weak strength of the orogenic wedge, and favours the faster upward movement of the UHP rock slices as ductile agents. The lower temperature gradient of the subduction slab predicted by modelling suggests the cold subducting slab could have transported significant fluids to mantle depth, not released during subduction. Accordingly, the absence of coeval calc alkalic magmatism in UHP orogens might resulted from the lower temperature as well as the fluid free circumstance, both are related to the rapid subduction of cold plate. Therefore, shear heating is not needed for explanation the thermal evolution of UHP orogen. On the other hand, the post collisional or late stage granitic plutonism is closely related to the deep seated heat producing materials of the accretion wedge.
基金supported by National Natural Science Foundation of China (Nos.10835004 and 10905010)the New Century Excellent Talents in University of China (No.NCET-08-0760)
文摘An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.
基金support of this project by the Strategic Priority Research Program of the National Center of Technology Innovation for Pigs(Grant No.NCTIP-XD/B07).
文摘The establishment of biosafety system is of enormous importance to the livestock and poultry production in terms of mitigating the transmission of diseases and implementing regional prevention and control measures.However,the current sterilization technology presents several drawbacks,including time-consuming procedures,chemical residues,and challenges in treating the sewage after rinsing.In this study,a novel cleaning and sterilization method that combines slightly acidic electrolyzed water and high pressure water-jet was developed.An orthogonal test was conducted to examine the correlation between high-pressure conditions and the various non-structural parameters on the efficacy of sterilization rate.In a field test,the effectiveness of the technology in cleaning pig transfer vehicles was evaluated by the total plate count and variations of community composition.The findings revealed that the combination of process parameters,including an available chlorine concentration of 200 mg/L,rinsing pressure of 170 bar,rinsing duration of 10 s,and residence time of 15 min,resulted in a removal rate of colony concentration on the surface of pig transfer vehicles of(96.50±0.91)%.Moreover,it was demonstrated to effectively inhibit a variety of pathogenic bacteria.The innovative cleaning system has the potential to replace traditional methods and reduces pollution while saving time and labor.It introduces a novel approach for sterilization of transportation in livestock and poultry farms as well as the biosafety construction of the animal husbandry.
基金This work was supported by the National Natural Science Foundation of China(grant number 22038012)Natural Science Foundation of Fujian,China(grant number 2022N3011)+1 种基金Research Foundation of Jimei University(grant number ZQ2020006,ZR2020004)Xiamen Ocean and Fishery Development Special Fund project(grant number 21CZP005HJ07).
文摘The effects of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets were analyzed.The results showed that ultra-high treatment changed monosaccharide composition,increased total dietary fiber and soluble dietary fiber from pomelo fruitlets,especially at 400 MPa where soluble dietary fiber was greatly increased from 32.49%±0.23%to 41.92%±0.32%as compared to native one(p<0.05).Besides,ultra-high pressure treatment enhanced water-and oil-holding capacity,as well as swelling capacity of dietary fiber,which were related to its more porous structure and hydrophobic groups.Crystallinity and thermal stability of ultra-high pressure modified dietary fibers increased.Moreover,ultra-high pressure modified dietary fibers possessed stronger bile acid binding and pancreatic lipase inhibition capacities,suggesting its better potential in vitro hypolipidemic activity.Our findings suggested that ultra-high pressure treatment is a promising method to obtain dietary fiber with excellent functional properties,and can provide a basis for the high-value utilization of pomelo fruitlets as functional food with blood-lipid regulation.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0302300)the China Postdoctoral Science Foundation(No.2019M652883)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110467)the financial support from the opening project of Guangdong provincial key laboratory of technique and equipment for macromolecular advanced manufacturing,South China University of Technology,China。
文摘Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring structure for higher EM resonances.Herein,we proposed a novel technique called cyclic pulsating pressure enhanced segregating structuration(CPP-SS),which can reinforce these two factors simultaneously.The structural information was supplied by optical microscopy(OM)and scanning electron microscopy(SEM),both of which confirmed the formation and evolution of segregate structured ultra-high molecular weight polyethylene(UHMWPE)/graphene composites.Then,the result showed that CPP-SS can significantly improve theσof samples.Ultimately,advanced specific EMI shielding efficiency of 31.1 d B/mm was achieved for UHMWPE/graphene composite at 1-mm thickness and a low graphene loading of 5 wt%.Meanwhile,it also confirmed that the intrinsic disadvantage of poor mechanical properties of conventional segregated structure composites can be surpassed.This work is believed to provide a fundamental understanding of the structural and performance evolutions of segregated structured composites prepared under CPPSS,and to bring us a simple and efficient approach for fabricating high-performance,strong and light-weight polymeric EMI shields.
基金supported by the Major Program of National Natural Science Foundation of China(No.52293372).
文摘High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.
基金funding projects of Chinese Ministry of Science and Technology:National Key research and development plan of China(2016YFC1201404)the Megaproject for Infectious Disease Research of China(2017ZX10304403-004-001).
文摘Concerns have been raised about both the disinfection and the reusability of respiratory protective equipment following a disinfection process.Currently,there is little data available on the effects of disinfection and decontamination on positive pressure respiratory protective hoods(PPRPH).In this study,we evaluated the effect of vaporized hydrogen peroxide(VHP)on the disinfection of PPRPH to determine applicability of this method for disinfection of protective equipment,especially protective equipment with an electric supply system.A hydrogen peroxide-based fumigation sterilization cabinet was developed particularly for disinfection of protective equipment,and the disinfection experiments were conducted using four PPRPHs hung in the fumigation chamber.The pathogenic microorganism Geobacillus stearothermophilus ATCC 7953 was used as a biological indicator in this study and the relationship between air flow(the amount of VHP)and disinfection was investigated.Both function and the material physical properties of the PPRPH were assessed following the disinfection procedure.No surviving Geobacillus stearothermophilus ATCC 7953,both inside and outside of these disinfected PPRPHs,could be observed after a 60 min treatment with an air flow of 10.5–12.3 m^(3)/h.Both function and material physical properties of these PPRPHs met the working requirements after disinfection.This study indicates that air flow in the fumigation chamber directly influences the concentration of VHP.The protective equipment fumigation sterilization cabinet developed in this paper achieves the complete sterilization of the PPRPHs when the air flow is at 10.5–12.3 m^(3)/h,and provides a potential solution for the disinfection of various kind of protective equipment.
基金Funded by the National Key Research and Development Program of China(No.2018YFC0705400)National Natural Science Foundation of China(No.51678142)the Fundamental Research Funds for the Central Universities。
文摘Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.
文摘浴缸形状的失效率函数因其能够捕捉某些实际情境中的故障率特征,在机械结构可靠性分析中至关重要。引入一种修正广义幂威布尔(Modified Power Generalized Weibull,MPGW)分布,能够建模表征浴缸形状的失效率变化规律。为评估该模型的有效性,本研究使用了压力蒸汽灭菌器故障数据集进行实证研究,并将其性能与5种经典分布模型进行了比较,发现该模型在灵活性上具有较大优势。