For AC transmission lines connected to an LCC-HVDC inverter station,commutation failure can lead to the wrong operation of traditional protection.To solve the problem,this paper proposes a fast protection scheme using...For AC transmission lines connected to an LCC-HVDC inverter station,commutation failure can lead to the wrong operation of traditional protection.To solve the problem,this paper proposes a fast protection scheme using transient information from one end of the AC line.The boundary frequency characteristics of the AC line connected to LCC-HVDC inverter are analyzed first.This reveals the existence of significant attenuation on both high frequency signals and some specific frequency signals.Based on the boundary characteristics,a novel boundary protection principle utilizing a backward traveling wave is then proposed.A PSCAD/EMTDC simulation model of a±800 kV LCC-HVDC and 500 kV AC transmission system is established,and different fault cases are simulated.The simulation results prove that the novel protection principle is immune to commutation failure,fault resistance and fault type.展开更多
基金supported by the National Key R&D Program of China(2016YFB0900603)the Technology Projects of State Grid Corporation of China(52094017000 W).
文摘For AC transmission lines connected to an LCC-HVDC inverter station,commutation failure can lead to the wrong operation of traditional protection.To solve the problem,this paper proposes a fast protection scheme using transient information from one end of the AC line.The boundary frequency characteristics of the AC line connected to LCC-HVDC inverter are analyzed first.This reveals the existence of significant attenuation on both high frequency signals and some specific frequency signals.Based on the boundary characteristics,a novel boundary protection principle utilizing a backward traveling wave is then proposed.A PSCAD/EMTDC simulation model of a±800 kV LCC-HVDC and 500 kV AC transmission system is established,and different fault cases are simulated.The simulation results prove that the novel protection principle is immune to commutation failure,fault resistance and fault type.