Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi...Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.展开更多
This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve ...This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve as the main-wing for low-Reynolds-number aircrafts such as micro air vehicles. Reynolds number dependency on aerodynamics is also evaluated at low Reynolds numbers. The results of the study show that the owl-like airfoil has high lift performance with a nonlinear lift increase due to the presence of a separation bubble on the suction side. A distinctive flow feature of the owl airfoil is a separation bubble on the pressure side at low angles of attack. The separation bubble switches location from the pressure side to the suction side as the angle of attack increases and is continuously present on the surface within a wide range of angles of attack. The Reynolds number dependency on the lift curves is insignificant, although differences in the drag curves are especially pronounced at high angles of attack. Eventually, we obtain the geometric feature of the owl-like airfoil to increase aerodynamic performance at low Reynolds numbers.展开更多
A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number ha...A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.展开更多
Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile t...Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile test data should be available. A suitable facility for testing wind turbine profiles at high Reynolds numbers is the Cryogenic Wind Tunnel Cologne DNW-KKK. By means of injecting liquid nitrogen the tunnel can be cooled down to 100 K and the Reynolds number therefore can be raised accordingly. The maximum Reynolds number for 2D profile tests can reach 27x10^6. In this paper the test uncertainty and the flow quality of DNW-KKK were analyzed. Then some test results on the Reynolds number effect of the wind turbine profiles will be presented. The Reynolds number effect is different from model to model. Especially for thick profiles and flow control devices the Reynolds number effect is not always like the description in literature.展开更多
This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several represent...This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil.展开更多
The aerodynamic performance of compressor airfoil is significantly affected by the surface roughness at low Reynolds number(Re).In the present study,numerical simulations have been conducted to investigate the impact ...The aerodynamic performance of compressor airfoil is significantly affected by the surface roughness at low Reynolds number(Re).In the present study,numerical simulations have been conducted to investigate the impact of surface roughness on the profile loss of a high subsonic compressor airfoil at Re=1.5×10^(5).Four roughness locations,covering 10%,30%,50%and 100%of the suction surface from the leading edge and seven roughness magnitudes(Ra)ranging from 52 to525 lm were selected.Results showed that the surface roughness mainly determined the loss generation process by influencing the structure of the Laminar Separation Bubble(LSB)and the turbulence level near the wall.For all the roughness locations,the variation trend for the profile loss with the roughness magnitude was similar.In the transitionally rough region,the negative displacement effect of the LSB was suppressed with the increase of roughness magnitude,leading to a maximum decrease of 14.6%,16.04%,16.45%and 10.20%in the profile loss at Ra=157 lm for the four roughness locations,respectively.However,with a further increase of the roughness magnitude in the fully rough region,the stronger turbulent dissipation enhanced the growth rate of the turbulent boundary layer and increased the profile loss instead.By comparison,the leading edge roughness played a dominant role in the boundary layer development and performance variation.To take fully advantage of the surface roughness reducing profile loss at low Re,the effects of roughness on suppressing LSB and inducing strong turbulent dissipation should be balanced effectively.展开更多
基金a Multidisciplinary University Research Initiative (MURI) project sponsored by AFOSR
文摘Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.
文摘This study experimentally investigates aerodynamic characteristics and flow fields of a smooth owl-like airfoil without serrations and velvet structures. This biologically inspired airfoil design is intended to serve as the main-wing for low-Reynolds-number aircrafts such as micro air vehicles. Reynolds number dependency on aerodynamics is also evaluated at low Reynolds numbers. The results of the study show that the owl-like airfoil has high lift performance with a nonlinear lift increase due to the presence of a separation bubble on the suction side. A distinctive flow feature of the owl airfoil is a separation bubble on the pressure side at low angles of attack. The separation bubble switches location from the pressure side to the suction side as the angle of attack increases and is continuously present on the surface within a wide range of angles of attack. The Reynolds number dependency on the lift curves is insignificant, although differences in the drag curves are especially pronounced at high angles of attack. Eventually, we obtain the geometric feature of the owl-like airfoil to increase aerodynamic performance at low Reynolds numbers.
基金supported by a Major Programme of the National Science and Technology Support,China Grant(2013BAG24B00),under the project“Key technologies and engineering application demonstration of High-speed train for energy saving”.
文摘A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number(Re)on the aerodynamic force and surface pressure experienced by a high speed train.The test Reynolds number has been varied from 1 million to 10 million,which is the highest Reynolds number a wind tunnel has ever achieved for a train test.According to our results,the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º.The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10 million.The side force is caused by the high pressure at the windward side and the low pressure generated by the vortex at the lee side.Both pressure distributions are not appreciably affected by Reynolds number changes at yaw angles up to 30°.The lift force coefficient increases with higher Re,though the change is small.At a yaw angle of zero the down force coefficient is reduced by a scale factor of about 0.03 when the Reynolds number is raised over the considered range.At higher yaw angles the lift force coefficient is reduced about 0.1.Similar to the side force coefficient,the rolling moment coefficient does not change much with Re.The magnitude of the pitching moment coefficient increases with higher Re.This indicates that the load on the front bogie is higher at higher Reynolds numbers.The yawing moment coefficient increases with Re.This effect is more evident at higher yaw angles.The yawing moment coefficient increases by about 6%when Re is raised from 1 million to 10 million.The influence of Re on the rolling moment coefficient around the leeward rail is relatively smaller.It increases by about 2%over the considered range of Re.
文摘Wind turbine size has increased continuously and correspondingly also its Reynolds numbers. The Reynolds number effect can therefore no longer be ignored in design and optimization of wind turbines. Reliable profile test data should be available. A suitable facility for testing wind turbine profiles at high Reynolds numbers is the Cryogenic Wind Tunnel Cologne DNW-KKK. By means of injecting liquid nitrogen the tunnel can be cooled down to 100 K and the Reynolds number therefore can be raised accordingly. The maximum Reynolds number for 2D profile tests can reach 27x10^6. In this paper the test uncertainty and the flow quality of DNW-KKK were analyzed. Then some test results on the Reynolds number effect of the wind turbine profiles will be presented. The Reynolds number effect is different from model to model. Especially for thick profiles and flow control devices the Reynolds number effect is not always like the description in literature.
文摘This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil.
基金the financial support of the National Natural Science Foundation of China (No. 51836008)the National Major Science and Technology Project of China (No. 2017-Ⅱ-0010-0024) for this project。
文摘The aerodynamic performance of compressor airfoil is significantly affected by the surface roughness at low Reynolds number(Re).In the present study,numerical simulations have been conducted to investigate the impact of surface roughness on the profile loss of a high subsonic compressor airfoil at Re=1.5×10^(5).Four roughness locations,covering 10%,30%,50%and 100%of the suction surface from the leading edge and seven roughness magnitudes(Ra)ranging from 52 to525 lm were selected.Results showed that the surface roughness mainly determined the loss generation process by influencing the structure of the Laminar Separation Bubble(LSB)and the turbulence level near the wall.For all the roughness locations,the variation trend for the profile loss with the roughness magnitude was similar.In the transitionally rough region,the negative displacement effect of the LSB was suppressed with the increase of roughness magnitude,leading to a maximum decrease of 14.6%,16.04%,16.45%and 10.20%in the profile loss at Ra=157 lm for the four roughness locations,respectively.However,with a further increase of the roughness magnitude in the fully rough region,the stronger turbulent dissipation enhanced the growth rate of the turbulent boundary layer and increased the profile loss instead.By comparison,the leading edge roughness played a dominant role in the boundary layer development and performance variation.To take fully advantage of the surface roughness reducing profile loss at low Re,the effects of roughness on suppressing LSB and inducing strong turbulent dissipation should be balanced effectively.