Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provide...Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.展开更多
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid st...Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.展开更多
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding cond...800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.展开更多
Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure ...Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure of catalyst layers with efficient mass transportation channels plays a vital role.Herein,PEMFCs with order-structured cathodic electrodes were fabricated by depositing Pt nanoparticles by Ebeam onto vertically aligned carbon nanotubes(VACNTs)growth on Al foil via plasma-enhanced chemical vapor deposition.Results demonstrate that the proportion of hydrophilic Pt-deposited region along VACNTs and residual hydrophobic region of VANCTs without Pt strongly influences the cell performance,in particular at high current densities.When Pt nanoparticles deposit on the top depth of around 600 nm on VACNTs with a length of 4.6μm,the cell shows the highest performance,compared with others with various lengths of VACNTs.It delivers a maximum power output of 1.61 W cm^(-2)(H_(2)/O_(2),150 k Pa)and 0.79 W cm^(-2)(H_(2)/Air,150 k Pa)at Pt loading of 50μg cm^(-2),exceeding most of previously reported PEMFCs with Pt loading of<100μg cm^(-2).Even though the Pt loading is down to 30μg cm^(-2)(1.36 W cm^(-2)),the performance is also better than 100μg cm^(-2)(1.24 W cm^(-2))of commercial Pt/C,and presents better stability.This excellent performance is critical attributed to the ordered hydrophobic region providing sufficient mass passages to facilitate the fast water drainage at high current densities.This work gives a new understanding for oxygen reduction reaction occurred in VACNTs-based ordered electrodes,demonstrating the most possibility to achieve a substantial reduction in Pt loading<100μg cm^(-2) without sacrificing in performance.展开更多
The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal ...The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.展开更多
Microwave-absorbing polymeric composites based on single-walled carbon nanotubes (SWNTs) are fabricated via a simple yet versatile method, and these SWNT-epoxy composites exhibit very impressive microwave absorption...Microwave-absorbing polymeric composites based on single-walled carbon nanotubes (SWNTs) are fabricated via a simple yet versatile method, and these SWNT-epoxy composites exhibit very impressive microwave absorption perfor- mances in a range of 2 GHz-18 GHz. For instance, a maximum absorbing value as high as 28 dB can be achieved for each of these SWNT-epoxy composites (1.3-mm thickness) with only 1 wt% loading of SWNTs, and about 4.8 GHz bandwidth, corresponding to a microwave absorption performance higher than 10 dB, is obtained. Furthermore, such low and appro- priate loadings of SWNTs also enhance the mechanical strength of the composite. It is suggested that these remarkable results are mainly attributable to the excellent intrinsic properties of SWNTs and their homogeneous dispersion state in the polymer matrix.展开更多
An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS...An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nan remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthen- ing phase.展开更多
The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperatu...The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature. The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation. The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region. The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.展开更多
Stress relaxation was chosen as the best method for monitoring the precipitation process. Tests were carried out on an ultra-low carbon bainitic steel containing Mn, Nb and B over 800~950℃. Specimens were solu- tion ...Stress relaxation was chosen as the best method for monitoring the precipitation process. Tests were carried out on an ultra-low carbon bainitic steel containing Mn, Nb and B over 800~950℃. Specimens were solu- tion treated at 1250℃ for a certain holding period. A prestain of 20% was applied at a strain rate of 0.1/s. The exper- imental results are displayed by a set of stress vs. 1g(time) curves different from the typical stress relaxation curves. There are two singularities forming a stress plateau on the stress vs.1g(time) curves when precipitates could be observed. Suppose the first one is the start of precipitation (Ps), and the second represcnts the fihish (Pf). As a result Precipitation-Time-Temperature relationship is described as C-shape curves based on two points. This mechanical method is suitable and precise for measuring precipitates in microalloyed steels during hot working.展开更多
A mathematical model was established and applied to simulate thedecarburization of RH-MFB process in Pansteel Company. Study of theeffects of w_[C]0, w_[O]0, Ar flowrate, evaluation rate the MFB lanceblowing parameter...A mathematical model was established and applied to simulate thedecarburization of RH-MFB process in Pansteel Company. Study of theeffects of w_[C]0, w_[O]0, Ar flowrate, evaluation rate the MFB lanceblowing parameters on the decarburization process was car- Ried out.The results showed that this model could give the quantitativeunderstanding of the process, especially the behavior of MFB Lanceblowing. This model has realized the optimum process of RH-MFBrefining for ultra-low carbon steels in Pansteel.展开更多
Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline...Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes(mMWCNT)were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm^(-2) for the MEA with mMWCNT was obtained at an ultra-low loading of 120μg·cm^(-2) Pt/PtRu(both cathode and anode),which was 44.7%higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.展开更多
According to the balance of carbon and oxygen, a decarburization model for the RH treatment has been developed. in which the influence of the mass transfer of carbon and oxygen in the liquid steel and the stirring ene...According to the balance of carbon and oxygen, a decarburization model for the RH treatment has been developed. in which the influence of the mass transfer of carbon and oxygen in the liquid steel and the stirring energy (ε) in the vacuum vessel on decarburization rate has been considered. The conclusion that the volumetric coefficients of the mass transfer of carbon is proportional to ε(1.5) is drawn. Industrical experiment proves this model is reliable. The influence of some factors on decarburization rate has been obtained. which can provide directions for RH treatment The decarburization behavior of steel with RH-OB treatment is also studied. The OB-or-not curve, the optimized OB time and OB amount are discussed.展开更多
The hot deformation behavior of an ultralow-carbon microalloyed steel was investigated using an MMS-200 thermal simulation test machine in a temperature range of 1073-1373 K and strain rate range of 0.01-10 s-1.The re...The hot deformation behavior of an ultralow-carbon microalloyed steel was investigated using an MMS-200 thermal simulation test machine in a temperature range of 1073-1373 K and strain rate range of 0.01-10 s-1.The results show that the flow stress decreases with increasing deformation temperature or decreasing strain rate.The strain-compensated constitutive model based on the Arrhenius equation for this steel was established using the true stress-strain data obtained from a hot compression test.Furthermore,a new constitutive model based on the Z-parameter was proposed for this steel.The predictive ability of two constitutive models was compared with statistical measures.The results indicate the new constitutive model based on the Z-parameter can more accurately predict the flow stress of an ultralow-carbon microalloyed steel during hot deformation.The dynamic recrystallization(DRX)nucleation mechanism at different deformation temperatures was observed and analyzed by transmission electron microscopy(TEM),and strain-induced grain boundary migration was observed at 1373 K/0.01 s^-1.展开更多
Zero-energy buildings constitute an effective means of reducing urban carbon emissions.High airtightness,a typical characteristic of zero-energy building,is closely related to the building’s air infiltration and has ...Zero-energy buildings constitute an effective means of reducing urban carbon emissions.High airtightness,a typical characteristic of zero-energy building,is closely related to the building’s air infiltration and has a signifi-cant impact on the performance of the building envelope,indoor air quality,building energy consumption,and efficient operation of air-conditioning systems.However,thus far,systematic developments in high-airtightness assurance technologies remain scarce.Most existing studies have tested the airtightness of buildings and typical building components;however,in-depth analyses into the formation of infiltration have not been reported.There-fore,for realizing zero-energy buildings,ensuring airtightness is an urgent problem that needs to be addressed.Accordingly,in this study,based on several building airtightness measurement studies,the typical air leakage paths in buildings were summarized,and the causes of typical air leakage components in buildings were further analysed by tracing construction processes.Moreover,targeted measures for airtightness in buildings were estab-lished and applied to practical cases.Lastly,the resulting improved building airtightness was measured and the results show that the airtightness of the measured ultra-low energy consumption buildings ranges from 0.13 h^(−1)to 0.57 h^(−1),with a mean value of 0.32 h^(−1).The effectiveness of the airtightness safeguard measures was verified.This study serves as a basis for the assumption of the air leakage path distribution when simulating building air infiltration and also provides a design reference for improving the construction technologies and airtightness of buildings.展开更多
Population density function (PDF), which can eliminate the arbitrariness caused by the choice of the num- ber and the size of bins compared to the well-used histograms, was introduced to analyze the amount of inclus...Population density function (PDF), which can eliminate the arbitrariness caused by the choice of the num- ber and the size of bins compared to the well-used histograms, was introduced to analyze the amount of inclusions. The population evolution of oxide inclusions in forms of PDF in Ti-stabilized ultra-low carbon steels after deoxidation during industrial RH refining and continuous casting processes was analyzed using an automated SEM-EDS system. It was found that after deoxidation till the early stage of casting, the alumina inclusions exhibited a lognormal PDF distribution, and three factors including the existence of a large amount of alumina clusters, the generation of alumi- na from the reduction of Al-Ti-O inclusions and the reoxidation of molten steel were estimated as the reasons. The shape parameter σ was high after deoxidation and then decreased after Ti treatment, indicating that in a short period after deoxidation, the size of alumina inclusions was widely distributed. After Ti treatment, the distribution of inclu- sion size was more concentrated. The scale parameter m decreased with time during the whole refining process, indi- cating that the proportion of large inclusions decreased during refining. Contrarily, the Al-Ti-O inclusions presented a fractal PDF distribution except at the end of casting with fractal dimension D of 4.3, and the constant of propor- tionality C decreased with time during RH refining and increased during casting process. The reoxidation of steel by slag entrapped from ladle was considered as the reason for the lognormal PDF behavior of Al-Ti-O inclusions at the end of casting.展开更多
The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different ...The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different morphologies of Ti(C,N)precipitate in hot strips.It is found that the Ti(C,N)precipitate in hot strip using Path 2(put into asbestos box and air cooled)are finer and much more in quantity than that in hot strip using Path 1(held at 730℃ for 30min and furnace cooled).The morphology of Ti(C,N)precipitate in hot strip has great effect on recrystallization texture in the subsequent cold-rolled annealed sheet.γ-fiber texture of strong recrystallization is gained in coldrolled and annealed sheet came from Path 1.On the contrary,in the one came from Path 2,theγ-fiber texture is weak.This may be due to the pinning force of numerous fine Ti(C,N)precipitate which retard the growth of preferential nucleated{111}orientated grains.Annealed steel sheets in the test came from both paths have excellent fishscale resistance.展开更多
Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and cha...Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.展开更多
The relationship of the P and C grain boundary segregation and its effect on bake hardening behavior were investigated in ultra-low carbon bake hardening (ULC-BH)steel with and without P addition annealed at 810 ℃ fo...The relationship of the P and C grain boundary segregation and its effect on bake hardening behavior were investigated in ultra-low carbon bake hardening (ULC-BH)steel with and without P addition annealed at 810 ℃ for various time using electron probe micro-analyzer,electroh backscattered diffraction,and three-dimensional atomic probe techniques.Results revealed that P addition and annealing duration considerably affected the bake hardening behavior of experimental steel. The BH value of ULC-BH steel without P addition is lower than that with P addition within a short annealing time,and the difference in the BH value gradually decreases as the annealing duration is prolonged.P segregation is dominant in terms of a high P bulk content in steels with P addition at the expense of C segregation during annealing.By contrast,opposite effects are observed in low carbon bake hardening steel.The high residual solute C content in steel with P addition is due to P segregation at the grain boundary.Site competition is mainly responsible for the lower BH value in ULC-BH steel without P addition than that with P addition.As the annealing time is further extended,C segregation begins at grain boundary despite the delayed P segregation,leading to a gradual decrease in the solute concentration in the matrix of steels with P addition.C and P segregations reach the equilibrium as the annealing time increases to 60 min at 810 ℃ in the two steel samples.Theoretical calculations reveal that the residual solute C concentration in the matrix decreases to zero,and this finding is consistent with the change trend of the bake hardening value.Hence,the C segregation at grain boundary. adversely influences the bake hardening property of ULC-BH steel.展开更多
By thermal neutron irradiation particle tracking autoradiography(PTA)technique,the development of boron segregation at grain boundaries in ultra-low carbon micro-alloy steels was investigated during cooling from 1150&...By thermal neutron irradiation particle tracking autoradiography(PTA)technique,the development of boron segregation at grain boundaries in ultra-low carbon micro-alloy steels was investigated during cooling from 1150°C to 850°C,and the effect of Cu on boron segregation at grain boundaries was discussed.By positron annihilation lifetime(PAL)technique,the changes of vacancy-type defects with temperatures and the effect of Cu on vacancy-type defects in the cooling process were discussed.Results show that,the concentration of boron at grain boundaries increases rapidly at the beginning of the cooling;after that,it begins to decrease;and then,it increases gradually again.The addition of Cu not only increases the concentration of boron at grain boundaries but also speeds up the development process of boron segregation at grain boundaries.During the continuous cooling process,the addition of Cu significantly affects the change of vacancy-type defects with temperatures in ultra-low carbon micro-alloy steels.展开更多
In two consecutive seasons, the storage capacity of “Jonagold” apple fruit was investigated under regular air (RA) and various controlled atmosphere (CA) conditions during six months at 0 ± 0.3 °C. The dif...In two consecutive seasons, the storage capacity of “Jonagold” apple fruit was investigated under regular air (RA) and various controlled atmosphere (CA) conditions during six months at 0 ± 0.3 °C. The different CA treatment combinations were: (1) 0.5 kPa O2 + 0.5 kPa CO2, (2) 2.0 kPa O2 + 1.0 kPa CO2, (3) 1.0 kPa O2 + 3.0 kPa CO2 and (4) 0.5 kPa O2 + 6.0 kPa CO2. Ethylene production and respiration rate were evaluated at each two months storage intervals during 7 d shelf life at 20 °C. Fruit quality traits were analyzed immediately at the end of storage period and after 7 d shelf life at 20 °C. Under CA treatment, the lower the O2 and/or the higher the CO2 partial pressure, the stronger was the inhibition of the ethylene production and respiration rate of apple fruit. The 0.5 kPa O2 + 6.0 kPa CO2 CA condition induced the strongest suppression in ethylene production and consequently lower CO2 release by apple fruit. At the end of storage period, “Jonagold” apple fruit was very tolerant to all CA conditions, and any kind of internal storage disorders was observed. The storage of “Jonagold” apple at 1.0 kPa O2 + 3.0 kPa CO2 and 0.5 kPa O2 + 6.0 kPa CO2 proportionated higher flesh firmness (FF), greener skin color (SC) and higher titratable acidity (TA) either immediately after storage or after 7 d shelf life at 20 °C. Total soluble solids were not significantly affected by CA storage conditions.展开更多
基金the Natural Science Foundation of Hubei Province of China(No.2020CFB860)。
文摘Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-16-079A1)the National Science Foundation for Young Scientists of China (No. 51704021)+1 种基金the Joint Funds of National Natural Science Foundation of China (No. U1560203)supported by Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials
文摘Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.
文摘800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)the Innovation Project of Guangxi Graduate Education(YCSW2020052)。
文摘Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure of catalyst layers with efficient mass transportation channels plays a vital role.Herein,PEMFCs with order-structured cathodic electrodes were fabricated by depositing Pt nanoparticles by Ebeam onto vertically aligned carbon nanotubes(VACNTs)growth on Al foil via plasma-enhanced chemical vapor deposition.Results demonstrate that the proportion of hydrophilic Pt-deposited region along VACNTs and residual hydrophobic region of VANCTs without Pt strongly influences the cell performance,in particular at high current densities.When Pt nanoparticles deposit on the top depth of around 600 nm on VACNTs with a length of 4.6μm,the cell shows the highest performance,compared with others with various lengths of VACNTs.It delivers a maximum power output of 1.61 W cm^(-2)(H_(2)/O_(2),150 k Pa)and 0.79 W cm^(-2)(H_(2)/Air,150 k Pa)at Pt loading of 50μg cm^(-2),exceeding most of previously reported PEMFCs with Pt loading of<100μg cm^(-2).Even though the Pt loading is down to 30μg cm^(-2)(1.36 W cm^(-2)),the performance is also better than 100μg cm^(-2)(1.24 W cm^(-2))of commercial Pt/C,and presents better stability.This excellent performance is critical attributed to the ordered hydrophobic region providing sufficient mass passages to facilitate the fast water drainage at high current densities.This work gives a new understanding for oxygen reduction reaction occurred in VACNTs-based ordered electrodes,demonstrating the most possibility to achieve a substantial reduction in Pt loading<100μg cm^(-2) without sacrificing in performance.
基金financially supported by the Hebei Province Science and Technology Support Program(No.14211007D)
文摘The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB933401 and 2014CB643502)the National Natural Science Foundation of China(Grant Nos.21374050,51273093,and 51373078)
文摘Microwave-absorbing polymeric composites based on single-walled carbon nanotubes (SWNTs) are fabricated via a simple yet versatile method, and these SWNT-epoxy composites exhibit very impressive microwave absorption perfor- mances in a range of 2 GHz-18 GHz. For instance, a maximum absorbing value as high as 28 dB can be achieved for each of these SWNT-epoxy composites (1.3-mm thickness) with only 1 wt% loading of SWNTs, and about 4.8 GHz bandwidth, corresponding to a microwave absorption performance higher than 10 dB, is obtained. Furthermore, such low and appro- priate loadings of SWNTs also enhance the mechanical strength of the composite. It is suggested that these remarkable results are mainly attributable to the excellent intrinsic properties of SWNTs and their homogeneous dispersion state in the polymer matrix.
基金supported partly by the National Natural Science Foundation of China (No. 51472170)the Major State Basic Research Development Program of China (No. 2011CB932700)
文摘An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nan remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthen- ing phase.
基金the Education Bureau of Hubei Province of China(No.2002A01013)
文摘The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature. The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation. The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region. The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained.
文摘Stress relaxation was chosen as the best method for monitoring the precipitation process. Tests were carried out on an ultra-low carbon bainitic steel containing Mn, Nb and B over 800~950℃. Specimens were solu- tion treated at 1250℃ for a certain holding period. A prestain of 20% was applied at a strain rate of 0.1/s. The exper- imental results are displayed by a set of stress vs. 1g(time) curves different from the typical stress relaxation curves. There are two singularities forming a stress plateau on the stress vs.1g(time) curves when precipitates could be observed. Suppose the first one is the start of precipitation (Ps), and the second represcnts the fihish (Pf). As a result Precipitation-Time-Temperature relationship is described as C-shape curves based on two points. This mechanical method is suitable and precise for measuring precipitates in microalloyed steels during hot working.
文摘A mathematical model was established and applied to simulate thedecarburization of RH-MFB process in Pansteel Company. Study of theeffects of w_[C]0, w_[O]0, Ar flowrate, evaluation rate the MFB lanceblowing parameters on the decarburization process was car- Ried out.The results showed that this model could give the quantitativeunderstanding of the process, especially the behavior of MFB Lanceblowing. This model has realized the optimum process of RH-MFBrefining for ultra-low carbon steels in Pansteel.
基金financial supports by the National Key Research and Development Program of China(2019YFB1504500)the National Natural Science Foundation of China(22078031,91834301,21761162015)+1 种基金the Fundamental Research Funds for the Central Universities,CQU(2020CDJQY-A032,2020CDJLHZZ064)the Natural Science Foundation of Chongqing(cstc2020jcyjmsxmX0637)。
文摘Reducing the loading of noble Pt-based catalyst is vital for the commercialization of proton exchange membrane fuel cell(PEMFC),However,severe mass transfer polarization loss resulting in fuel cell performance decline will be encountered in ultra-low Pt PEMFC.In this work,mild oxidized multiwalled carbon nanotubes(mMWCNT)were adopted to construct the catalyst layer,and by varying the loading of carbon nanotubes,the catalyst layer structure was optimized.A high peak power density of 1.23 W·cm^(-2) for the MEA with mMWCNT was obtained at an ultra-low loading of 120μg·cm^(-2) Pt/PtRu(both cathode and anode),which was 44.7%higher than that of MEA without mMWCNT.Better catalyst dispersion,low charge transfer resistance,more porous structure and high hydrophobicity of catalyst layer were ascribed for the reasons of the performance improvement.
文摘According to the balance of carbon and oxygen, a decarburization model for the RH treatment has been developed. in which the influence of the mass transfer of carbon and oxygen in the liquid steel and the stirring energy (ε) in the vacuum vessel on decarburization rate has been considered. The conclusion that the volumetric coefficients of the mass transfer of carbon is proportional to ε(1.5) is drawn. Industrical experiment proves this model is reliable. The influence of some factors on decarburization rate has been obtained. which can provide directions for RH treatment The decarburization behavior of steel with RH-OB treatment is also studied. The OB-or-not curve, the optimized OB time and OB amount are discussed.
基金Funded by the Fundamental Research Funds for the Central Universities(Nos.HEUCFP201731 and HEUCFP201719)the"One Three Five"Equipment Pre-research National Defense Science and Technology Key Laboratory Fund(No.KZ42180125)。
文摘The hot deformation behavior of an ultralow-carbon microalloyed steel was investigated using an MMS-200 thermal simulation test machine in a temperature range of 1073-1373 K and strain rate range of 0.01-10 s-1.The results show that the flow stress decreases with increasing deformation temperature or decreasing strain rate.The strain-compensated constitutive model based on the Arrhenius equation for this steel was established using the true stress-strain data obtained from a hot compression test.Furthermore,a new constitutive model based on the Z-parameter was proposed for this steel.The predictive ability of two constitutive models was compared with statistical measures.The results indicate the new constitutive model based on the Z-parameter can more accurately predict the flow stress of an ultralow-carbon microalloyed steel during hot deformation.The dynamic recrystallization(DRX)nucleation mechanism at different deformation temperatures was observed and analyzed by transmission electron microscopy(TEM),and strain-induced grain boundary migration was observed at 1373 K/0.01 s^-1.
基金the Natural Science Foundation of Shandong Province Youth Project(Grant no.ZR2020QE224).
文摘Zero-energy buildings constitute an effective means of reducing urban carbon emissions.High airtightness,a typical characteristic of zero-energy building,is closely related to the building’s air infiltration and has a signifi-cant impact on the performance of the building envelope,indoor air quality,building energy consumption,and efficient operation of air-conditioning systems.However,thus far,systematic developments in high-airtightness assurance technologies remain scarce.Most existing studies have tested the airtightness of buildings and typical building components;however,in-depth analyses into the formation of infiltration have not been reported.There-fore,for realizing zero-energy buildings,ensuring airtightness is an urgent problem that needs to be addressed.Accordingly,in this study,based on several building airtightness measurement studies,the typical air leakage paths in buildings were summarized,and the causes of typical air leakage components in buildings were further analysed by tracing construction processes.Moreover,targeted measures for airtightness in buildings were estab-lished and applied to practical cases.Lastly,the resulting improved building airtightness was measured and the results show that the airtightness of the measured ultra-low energy consumption buildings ranges from 0.13 h^(−1)to 0.57 h^(−1),with a mean value of 0.32 h^(−1).The effectiveness of the airtightness safeguard measures was verified.This study serves as a basis for the assumption of the air leakage path distribution when simulating building air infiltration and also provides a design reference for improving the construction technologies and airtightness of buildings.
基金Item Sponsored by National Natural Science Foundation of China(51274034,51334002,51404019)Independent Research and Development Program from State Key Laboratory of Advanced Metallurgy of China
文摘Population density function (PDF), which can eliminate the arbitrariness caused by the choice of the num- ber and the size of bins compared to the well-used histograms, was introduced to analyze the amount of inclusions. The population evolution of oxide inclusions in forms of PDF in Ti-stabilized ultra-low carbon steels after deoxidation during industrial RH refining and continuous casting processes was analyzed using an automated SEM-EDS system. It was found that after deoxidation till the early stage of casting, the alumina inclusions exhibited a lognormal PDF distribution, and three factors including the existence of a large amount of alumina clusters, the generation of alumi- na from the reduction of Al-Ti-O inclusions and the reoxidation of molten steel were estimated as the reasons. The shape parameter σ was high after deoxidation and then decreased after Ti treatment, indicating that in a short period after deoxidation, the size of alumina inclusions was widely distributed. After Ti treatment, the distribution of inclu- sion size was more concentrated. The scale parameter m decreased with time during the whole refining process, indi- cating that the proportion of large inclusions decreased during refining. Contrarily, the Al-Ti-O inclusions presented a fractal PDF distribution except at the end of casting with fractal dimension D of 4.3, and the constant of propor- tionality C decreased with time during RH refining and increased during casting process. The reoxidation of steel by slag entrapped from ladle was considered as the reason for the lognormal PDF behavior of Al-Ti-O inclusions at the end of casting.
基金Sponsored by National Natural Science Foundation of China(50527402)National Basic Research Program(973Program)of China(2011CB606306-2)
文摘The Ti(C,N)precipitation and texture evolution in ultra-low carbon Ti-bearing enamel steel were studied to discover their correlation.Two different cooling paths of simulative coiling were adopted to gain different morphologies of Ti(C,N)precipitate in hot strips.It is found that the Ti(C,N)precipitate in hot strip using Path 2(put into asbestos box and air cooled)are finer and much more in quantity than that in hot strip using Path 1(held at 730℃ for 30min and furnace cooled).The morphology of Ti(C,N)precipitate in hot strip has great effect on recrystallization texture in the subsequent cold-rolled annealed sheet.γ-fiber texture of strong recrystallization is gained in coldrolled and annealed sheet came from Path 1.On the contrary,in the one came from Path 2,theγ-fiber texture is weak.This may be due to the pinning force of numerous fine Ti(C,N)precipitate which retard the growth of preferential nucleated{111}orientated grains.Annealed steel sheets in the test came from both paths have excellent fishscale resistance.
基金financial supports from Natural Science Foundation of Ningbo(202003N4026)S&T Innovation 2025 Major Special Programme of Ningbo(2018B10054)National Natural Science Foundation of China(62001065 and 51603218)。
文摘Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.
基金the National Natural Science Foundation of China (Nos.51874114 and 51501052)the Youth Talent Support Program of Hebei Province (No.BJ2017056).
文摘The relationship of the P and C grain boundary segregation and its effect on bake hardening behavior were investigated in ultra-low carbon bake hardening (ULC-BH)steel with and without P addition annealed at 810 ℃ for various time using electron probe micro-analyzer,electroh backscattered diffraction,and three-dimensional atomic probe techniques.Results revealed that P addition and annealing duration considerably affected the bake hardening behavior of experimental steel. The BH value of ULC-BH steel without P addition is lower than that with P addition within a short annealing time,and the difference in the BH value gradually decreases as the annealing duration is prolonged.P segregation is dominant in terms of a high P bulk content in steels with P addition at the expense of C segregation during annealing.By contrast,opposite effects are observed in low carbon bake hardening steel.The high residual solute C content in steel with P addition is due to P segregation at the grain boundary.Site competition is mainly responsible for the lower BH value in ULC-BH steel without P addition than that with P addition.As the annealing time is further extended,C segregation begins at grain boundary despite the delayed P segregation,leading to a gradual decrease in the solute concentration in the matrix of steels with P addition.C and P segregations reach the equilibrium as the annealing time increases to 60 min at 810 ℃ in the two steel samples.Theoretical calculations reveal that the residual solute C concentration in the matrix decreases to zero,and this finding is consistent with the change trend of the bake hardening value.Hence,the C segregation at grain boundary. adversely influences the bake hardening property of ULC-BH steel.
基金supported by the National Natural Science Foundation of China(Grant No.51276016)the National Basic Research Program of China("973" Project)(Grant No.2012CB720406)
文摘By thermal neutron irradiation particle tracking autoradiography(PTA)technique,the development of boron segregation at grain boundaries in ultra-low carbon micro-alloy steels was investigated during cooling from 1150°C to 850°C,and the effect of Cu on boron segregation at grain boundaries was discussed.By positron annihilation lifetime(PAL)technique,the changes of vacancy-type defects with temperatures and the effect of Cu on vacancy-type defects in the cooling process were discussed.Results show that,the concentration of boron at grain boundaries increases rapidly at the beginning of the cooling;after that,it begins to decrease;and then,it increases gradually again.The addition of Cu not only increases the concentration of boron at grain boundaries but also speeds up the development process of boron segregation at grain boundaries.During the continuous cooling process,the addition of Cu significantly affects the change of vacancy-type defects with temperatures in ultra-low carbon micro-alloy steels.
文摘In two consecutive seasons, the storage capacity of “Jonagold” apple fruit was investigated under regular air (RA) and various controlled atmosphere (CA) conditions during six months at 0 ± 0.3 °C. The different CA treatment combinations were: (1) 0.5 kPa O2 + 0.5 kPa CO2, (2) 2.0 kPa O2 + 1.0 kPa CO2, (3) 1.0 kPa O2 + 3.0 kPa CO2 and (4) 0.5 kPa O2 + 6.0 kPa CO2. Ethylene production and respiration rate were evaluated at each two months storage intervals during 7 d shelf life at 20 °C. Fruit quality traits were analyzed immediately at the end of storage period and after 7 d shelf life at 20 °C. Under CA treatment, the lower the O2 and/or the higher the CO2 partial pressure, the stronger was the inhibition of the ethylene production and respiration rate of apple fruit. The 0.5 kPa O2 + 6.0 kPa CO2 CA condition induced the strongest suppression in ethylene production and consequently lower CO2 release by apple fruit. At the end of storage period, “Jonagold” apple fruit was very tolerant to all CA conditions, and any kind of internal storage disorders was observed. The storage of “Jonagold” apple at 1.0 kPa O2 + 3.0 kPa CO2 and 0.5 kPa O2 + 6.0 kPa CO2 proportionated higher flesh firmness (FF), greener skin color (SC) and higher titratable acidity (TA) either immediately after storage or after 7 d shelf life at 20 °C. Total soluble solids were not significantly affected by CA storage conditions.