This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being ...This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions.The manufacturing temperature of biocoke may vary between 150℃ and 190℃.Utilizing SEM-EDS,we were able to characterize the microstructure and analyze the elemental composition,while the Hardness Shore D approach was used for the most complex materials.These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance.They show a positive correlation between biocoke hardness and structured carbon content.At 150℃ and 180℃,respectively,the EFB biocoke reached its maximum hardness level of 62±5.At 190℃,OPM biocoke generated a 60±5 times greater hardness than that of OPM and OPF biocoke.The OPT biocoke sample had the highest porosity with a score of 0.86,or 85.76%.Furthermore,compared to EFB biocoke,OPM and OPF biocokes had a priority of 0.84(84.20%)and 0.83(83.48%),respectively.Biocoke hardness is a quality indicator of physical and chemical qualities;the vital link between biocoke hardness,structural features,and elemental composition supports this idea.展开更多
The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,he...The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.展开更多
The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumabl...The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.展开更多
The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in ...The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.展开更多
Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is ex...Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.展开更多
Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-ro...Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.展开更多
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi...Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MP...For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions.展开更多
DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS3...DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n...Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.展开更多
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its fut...Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its future industrialization.However,hard carbon as a state-of-the-art anode of SIBs still suffers from the low initial Coulomb efficiency and unsatisfactory rate capability,which could be improved by forming desirable solid electrolyte interphases (SEI) to some extent.Indeed,the chemistry and morphology of these interfacial layers are fundamental parameters affecting the overall battery operation,and optimizing the electrolyte to dictate the quality of SEI on hard carbon is a key strategy.Hence,this review summarizes the recent research on SEI design by electrolyte manipulation from solvents,salts,and additives.It also presents some potential mechanisms of SEI formation in various electrolyte systems.Besides,the current advanced characterization techniques for electrolyte and SEI structure analyses have been comprehensively discussed.Lastly,current challenges and future perspectives of SEI formation on hard carbon anode for SIBs are provided from the viewpoints of its compositions,evolution processes,structures,and characterization techniques,which will promote SEI efficient manipulation and improve the performance of hard carbon,and further contribute to the development of SIBs.展开更多
Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes...Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes,could deliver high plateau capacities at low potentials,which boosts the energy densities of SIBs.Their slope capacities have been demonstrated from the defect adsorption of sodium ions,while the plateau capacity depends highly on intercalation and pore filling.Nevertheless,the specific structures of sodium ions stored in hard carbons have not been clarified,namely active sites of adsorption,intercalation,and pore-filling mechanisms.Therefore,delicate synthesis methods are required to prepare hard carbons with controllable specific structures,along with elucidating the precise active sites for enhancing the Na-ion storage performance.To offer databases for future designs,we summarized the synthesis strategies of hard carbon anodes for constructing active sites of plateau capacities.Synthesis methods were highlighted with corresponding influences on the meticulous structures of hard carbons and Na-ion storage behaviors.Last but not least,perspectives were proposed for developing hard carbon anodes from the points of research and practical applications.展开更多
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan...The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.展开更多
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun...In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters.展开更多
基金support from Cisitu Advanced Characterization Laboratories and the National Research and Innovation Agency through E-Layanan Sains-BRIN.
文摘This research investigates the relationship between hardness and microstructure obtained through SEM-EDS analysis of palm oil waste-based biocoke.The mechanical qualities and chemical composition of biocoke are being studied concerning the influence of temperature conditions.The manufacturing temperature of biocoke may vary between 150℃ and 190℃.Utilizing SEM-EDS,we were able to characterize the microstructure and analyze the elemental composition,while the Hardness Shore D approach was used for the most complex materials.These results highlight the possibility of optimizing production temperature to produce biocoke with better mechanical performance.They show a positive correlation between biocoke hardness and structured carbon content.At 150℃ and 180℃,respectively,the EFB biocoke reached its maximum hardness level of 62±5.At 190℃,OPM biocoke generated a 60±5 times greater hardness than that of OPM and OPF biocoke.The OPT biocoke sample had the highest porosity with a score of 0.86,or 85.76%.Furthermore,compared to EFB biocoke,OPM and OPF biocokes had a priority of 0.84(84.20%)and 0.83(83.48%),respectively.Biocoke hardness is a quality indicator of physical and chemical qualities;the vital link between biocoke hardness,structural features,and elemental composition supports this idea.
基金supported by the National Natural Science Foundation of China(No.51878127)the Fundamental Research Funds for the Central Universities(N180104013).
文摘The compaction characteristics of gravelly soil are affected by gravel hardness.To investigate the evolution and influencing mechanism of different gravel hardness on the compaction characteristics of gravelly soil,heavy compaction tests and crushing tests were conducted on gravelly soils with gravels originated from hard,soft and extremely soft rocks.According to orthogonal experiments and variance analysis,it was found that hardness has a significant impact on the maximum dry density of gravelly soil,followed by gravel content,and lastly,moisture content.For gravel compositions with an average saturated uniaxial compressive strength less than 60 MPa,the order of compacted maximum dry density is soft gravels>hard gravels>extremely soft gravels.Each type of gravelly soil has a threshold for gravel content,with 60%for hard and soft gravels and 50%for extremely soft gravels.Beyond these thresholds,the compacted dry density decreases significantly.There is a certain interaction between hardness,gravel content,and moisture content.Higher hardness increases the influence of gravel content,whereas lower hardness increases the influence of moisture content.Gravelly soils with the coarse aggregate(CA)between 0.7 and 0.8 typically achieve higher dry densities after compaction.In addition,the prediction equations for the particle breakage rate and CA ratio in the Bailey method were proposed to estimate the compaction performance of gravelly soil preliminarily.The results further revealed the compaction mechanism of different gravelly soils and can provide reference for subgrade filling construction.
文摘The welding interface is crucial to the service safety of dissimilar metal weld(DMW)joints between stainless steel(SS)and low alloy(LA)steel.Different status of welding interfaces was prepared by cladding SS consumables to LA steel substrates with different heat inputs via tungsten inert gas arc welding(TIG),followed by a series of microstructural characterizations and hardness tests.Results showed that a hardening and transition layer(TL)would be generated along the welding interface,and the width and hardening degree of the TL would increase with the heat input.Meanwhile,heavy load hardness tests showed that highly severe inhomogeneous plastic deformation and the microcrack would be generated in the interfacial region and the welding interface respectively in the highest heat input sample(1.03 kJ/mm).These results indicate that the increase in heat input would deteriorate the bonding performance of DMW joints.Further microstructural observations showed that the higher hardening degree of the highest heat input sample was mainly attributed to the stronger grain boundary,solution,and dislocation strengthening effects.
基金Supported by National Natural Science Foundation of China(Grant No.51675415)Key Research and Development Program of Shaanxi,China(Grant No.2021GXLH-Z-049).
文摘The hardening on surface of complex profles such as thread and spline manufactured by cold rolling can efectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superfcial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment refecting the uneven deformation during complex-profle rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples refecting the local deformation characteristics of complexprofle rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profle rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., ε < 1.2) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., ε > 1.2) of training samples can be well described by power regression model;so the correlation relationship between strain and hardness during complex-profle rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range ε < 1.2 and power function with a ftting constant in the range ε > 1.2;and the predicting error of the regression model by segmented function is less than 10%.
基金supported by National Key R&D Program of China(2018YFD0900400,2019YFD0900200)National Natural Science Foundation of China for Outstanding Youth Science Foundation(31922086)+3 种基金National Nature Science Foundation of China(32172988)the Young Top-Notch Talent Support Program of National Ten-Thousand Talents Program,the Earmarked Fund for China Agriculture Research System(CARS-45)Outstanding Talents and Innovative Team of Agricultural Scientific Research(Ministry of Agriculture)Supported by Sichuan Science and Technology Program(2019YFN0036).
文摘Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.
文摘Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.
基金The authors are grateful for the grants provided by the National Natural Science Foundation of China(Grant no.52274309)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant no.CX20220183)Simin Li thanks the National Natural Science Foundation of China(Grant no.52204327).
文摘Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
文摘For joining high Cr,Ni and Mo austenitic stainless steel(AISI 316)by direct drive friction welding(DDFW),with friction weld-ing conditions:rotation speed of 3000 r/min,friction time of 10 s,friction pressure of 130 MPa,forge time of 5 s and forge pressure of 260 MPa.The results of microstructure showed that the temperature at the interface reached 819℃while forge applied between 357-237℃,which subdivided welded joint into four distinct regions of highly plastically deformed zone(HPDZ),thermo-mechanically affected zone(TMAZ),heat affected zone(HAZ)and the base metal,with grain size about 10µm,100µm,90µm and 30µm respectively.These re-gions were created due to dynamic recrystallization(DRX)at the interface and thermo-mechanical deformation with heat diffusion in the neighboring regions.Whereas,high level of microhardness about 300 HV0.1 and hardness roughly 240 Hv10 at the interface due to HPDZ creation while low level of 240 HV0.1 for microhardness and moderately of 205 HV10 for hardness in neighboring regions.
基金supported by Kansai Electric Power Co.,Inc.,Japan.The authors gratefully acknowledge the assistance of Mr.Ikumi Asai,who holds a Master’s degree from the Graduate School of Engineering,Osaka University,Japan.
文摘DSA(dynamic strain aging)phenomenon in SUS316 steel was investigated using isothermal and non-isothermal tensile tests of simulated HAZ(heat-affected zone)thermal cycles.Isothermal tensile tests were performed on SUS316 in the peak temperature range of 20-700°C,with strain rates varying from 4.2×10^(-3)to 4.2×10^(-5)s^(-1).Based on the appearance of discontinuous plastic flows,expressed as serrations,and the hardening phenomenon of the tensile samples,the conditions for the occurrence of DSA in the SUS316 steel were investigated.Furthermore,the extent of hardening due to DSA was evaluated by comparing the hardness values of the SUS316 and SUS316EHP steels after the tensile tests.To confirm the effect of DSA on hardness in the HAZ of the welded SUS316 steel,non-isothermal tensile tests of the simulated HAZ thermal cycles were performed using a Thermec Master.The relationship between the increase in Vickers hardness due to DSA and the strain in the HAZ was determined;the effect of DSA on hardness in the HAZ could be predicted.The DSA in SUS316 steel was found to be mainly attributed to the dynamic interaction of dislocations with C and N interstitial atoms during high-temperature deformation.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
文摘Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.
基金financially supported by the Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS/1/2022/STG05/UM/01/2) awarded to Ramesh T Subramaniamby Technology Development Fund 1 (TeD1)from the Ministry of Science,Technology,and Innovation (MOSTI),Malaysia (MOSTI002-2021TED1)supported by the Key Research Program of Yichang City(2023KYPT0303)
文摘Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its future industrialization.However,hard carbon as a state-of-the-art anode of SIBs still suffers from the low initial Coulomb efficiency and unsatisfactory rate capability,which could be improved by forming desirable solid electrolyte interphases (SEI) to some extent.Indeed,the chemistry and morphology of these interfacial layers are fundamental parameters affecting the overall battery operation,and optimizing the electrolyte to dictate the quality of SEI on hard carbon is a key strategy.Hence,this review summarizes the recent research on SEI design by electrolyte manipulation from solvents,salts,and additives.It also presents some potential mechanisms of SEI formation in various electrolyte systems.Besides,the current advanced characterization techniques for electrolyte and SEI structure analyses have been comprehensively discussed.Lastly,current challenges and future perspectives of SEI formation on hard carbon anode for SIBs are provided from the viewpoints of its compositions,evolution processes,structures,and characterization techniques,which will promote SEI efficient manipulation and improve the performance of hard carbon,and further contribute to the development of SIBs.
基金Silk Road Economic Belt Innovation-driven Development Pilot Zone,Wuchangshi National Independent Innovation Demonstration Zone Science and Technology Development Plan of China(2023LQ04002)King Abdullah University of Science and Technology(KAUST).
文摘Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes,could deliver high plateau capacities at low potentials,which boosts the energy densities of SIBs.Their slope capacities have been demonstrated from the defect adsorption of sodium ions,while the plateau capacity depends highly on intercalation and pore filling.Nevertheless,the specific structures of sodium ions stored in hard carbons have not been clarified,namely active sites of adsorption,intercalation,and pore-filling mechanisms.Therefore,delicate synthesis methods are required to prepare hard carbons with controllable specific structures,along with elucidating the precise active sites for enhancing the Na-ion storage performance.To offer databases for future designs,we summarized the synthesis strategies of hard carbon anodes for constructing active sites of plateau capacities.Synthesis methods were highlighted with corresponding influences on the meticulous structures of hard carbons and Na-ion storage behaviors.Last but not least,perspectives were proposed for developing hard carbon anodes from the points of research and practical applications.
基金supported by National Natural Science Foundation of China(51903113 and 52073133)China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.
基金supported by the Chongqing Postdoctoral Special Support(No.2022CQBSHTB1022)the Autonomous General Projects of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS202209)the State Key Laboratory of Coal Mine Disaster Dynamics and Control Faces the 2030 project(No.2011DA105287-MX2030-202002).
文摘In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters.