期刊文献+
共找到6,141篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
1
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 strain rate strain hardening Nano rubber EPOXY Adiabatic shearing localization
下载PDF
Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications:Constraints from GPS Measurements with ABIC Method
2
作者 YANG Shaohua PAN Jiawei +1 位作者 LI Haibing SHI Yaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期265-275,共11页
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne... The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust. 展开更多
关键词 strain rate differential escape ABIC GPS southeastern Tibet
下载PDF
Spalling characteristics of high-temperature treated granitic rock at different strain rates
3
作者 L.F.Fan Q.H.Yang X.L.Du 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1280-1288,共9页
The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen... The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate. 展开更多
关键词 Dynamic spalling characteristics High temperature strain rate Dynamic loading GRANITE
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
4
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 Dynamic behaviors True triaxial compression High strain rates Dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
Strain Rate Effect of AE Characteristics in the Whole Process of Uniaxial Tensile of Mortar
5
作者 王娜 王岩 +1 位作者 SU Yihui ZHAO Haitao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期547-556,共10页
We completed the uniaxial tensile test of mortar in the range of strain rate from 10^(-6)to 10^(-4)s^(-1)in the section containing softening,and carried out acoustic emission monitoring(AE)simultaneously.A series of A... We completed the uniaxial tensile test of mortar in the range of strain rate from 10^(-6)to 10^(-4)s^(-1)in the section containing softening,and carried out acoustic emission monitoring(AE)simultaneously.A series of AE parameters and spectrum analysis methods were used to identify the damage evolution process and cracking mechanism of mortar at different strain rates.The results show that,with the increase of strain rate,the peak stress and tensile elastic modulus of mortar increase obviously,and the stress level corresponding to the starting point of AE activity increases significantly as well,which indicates that the mechanical properties and AE characteristics of mortar have obvious strain rate effect.With the increase of strain rate,the cumulative AE hit decreases gradually,while the average AE hit rate increases significantly,indicating that the increase of strain rate reduces the damage degree of internal microstructure of the specimen,but the crack propagation speed increases.In the pre-peak stress stage,the average of AE ringing count and signal energy decreases with the increase of strain rate,while the average of duration increases;in the post-peak stress stage(f_(t)-30%f_(t)),the average of the three AE parameters all increase with the increase of strain rate,indicating that the strain rate effect on the damage process of mortar is different before and after peak stress,and the damage mechanism represented by different parameters is also different.In the whole process of uniaxial tensile of mortar,with the increase of strain rate,the scatter distribution of AE frequency-amplitude becomes more discrete,and the b-value shows a decreasing trend.In addition,the average level of AE peak frequency decreases with the increase of strain rate,while that of ca8 band wavelet energy spectrum coefficient increases.It is indicated that the increase of strain rate enables the crack propagation state of mortar specimen to become unstable,and the width of macrocrack increases but the proportion decreases. 展开更多
关键词 MORTAR acoustic emission uniaxial tension strain rate
下载PDF
Productive Traits and Triploid Rate Stability in Triploidy-Induced ‘Haida No. 2’ Strain of the Pacific Oyster, Crassostrea gigas
6
作者 LI Yongguo LI Qi +1 位作者 LIU Ye XU Chengxun 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期229-234,共6页
In order to evaluate the effects of triploidy induction on a selected strain‘Haida No.2’of the Pacific oyster Crassostrea gigas,which is characterized with golden shell color and high growth rate,the growth,survival... In order to evaluate the effects of triploidy induction on a selected strain‘Haida No.2’of the Pacific oyster Crassostrea gigas,which is characterized with golden shell color and high growth rate,the growth,survival rate and stability of triploid rate were analyzed at different development stages in the present study.Three different conditions inhibiting the release of polar body Ⅱ or polar body Ⅰ were tested:(A)Cytochalasin-B(CB),0.5mg L^(−1) at 10min post-insemination for 15 min;(B)CB,0.5mg L^(−1)at 15 min postinsemination for 20 min;and(C)CB,0.7mg L^(−1),at 15 min post-insemination for 20 min.The triploidy induction treatments significantly reduced the D-larvae and survival rates at the larvae stage but not at the juvenile and adult stages.Triploid rate dramatically decreased at the larval stage and did not significantly change at the juvenile and adult stages.Regarding the stability of the triploid rate,there was a significant difference between the three treatment groups.Larvae from the treatment A and control groups exhibited higher growth rates in shell height than those from the other two treatment groups at day 27.Triploid juveniles and adults from the treatment A group exhibited a higher wet weight than diploids from the control group and triploids from the other treatment groups.Triploidy induction did not affect the shell color of the progeny.The results obtained in the study demonstrate that triploidy induction has the potential to be used to increase the production of C.gigas variety‘Haida No.2’without modifying its golden shell color. 展开更多
关键词 Crassostrea gigas selective strain triploidy induction survival growth triploid rate stability
下载PDF
The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet
7
作者 H.Wang X.Sun +4 位作者 S.Kurukuri M.J.Worswick D.Y.Li Y.H.Peng P.D.Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期882-891,共10页
To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently f... To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions. 展开更多
关键词 Rare-earth magnesium alloy strain rate sensitivity TWINNING Crystal plasticity
下载PDF
Strain-Rate Dependency of a Unidirectional Filament Wound Composite under Compression
8
作者 Stepan Konev Victor A.Eremeyev +5 位作者 Hamid M.Sedighi Leonid Igumnov Anatoly Bragov Aleksandr Konstantinov Ayaulym Kuanyshova Ivan Sergeichev 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2149-2161,共13页
This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactu... This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactured through the filament winding of flat plates.To establish the strain rate dependencies of the strength and elastic modulus of the material,dynamic tests were carried out using a drop tower,the Split Hopkinson Pressure Bar method,and standard static tests.The samples were loaded both along and perpendicular to the direction of the reinforcing fiber.The applicability of the obtained samples for static and dynamic tests was confirmed through finite elementmodeling and the high-speed imaging of the deformation and failure of samples during testing.As a result of the conducted experimental studies,static and dynamic stress-strain curves,time dependencies of deformation and the stress and strain rates of the samples during compression were obtained.Based on these results,the strain rate dependencies of the strength and elasticity modulus in the strain rate range of 0.001-6001/s are constructed.It is shown that the strain rate significantly affects the strength and deformation characteristics of the unidirectional carbon fiber composites under compression.An increase in the strain rate by 5 orders of magnitude increased the strength and elastic modulus along the fiber direction by 42%and 50%,respectively.Perpendicular loading resulted in a strength and elastic modulus increase by 58%and 50%,respectively.The average strength along the fibers at the largest studied strain rate was about 1000MPa.The obtained results can be used to design structural elements made of polymer composite materials operating under dynamic shock loads,as well as to build models of mechanical behavior and failure criteria of such materials,taking into account the strain rate effects. 展开更多
关键词 High strain rate COMPOSITES filament winding dynamic strength Split Hopkinson Pressure Bar compression
下载PDF
A novel fractal-statistical scaling model of rocks considering strain rate
9
作者 Changtai Zhou Heping Xie +2 位作者 Zhihe Wang Tao Zhou Jianbo Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2831-2841,共11页
The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to con... The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to connect laboratory measurements at small scales and engineering applications at large scales.However,limited works consider the strain rate effect.In this study,an fractal-statistical scaling model incorporating strain rate is proposed based on a weakest-link approach,fractal theory and dynamic fracture mechanics.The proposed scaling model consists of 8 model parameters with physical meaning,i.e.rate-dependent parameter,intrinsic material parameter,dynamic strain rate,quasi-static strain rate,quasi-static fracture toughness,micro-crack size,micro-crack intensity and fractal dimension,enabling the proposed scaling model to model the scaling behaviors under different external conditions.Theoretical predictions are consistent with experimental data on red sandstone,proving the reliability and effectiveness of the proposed scaling model.Thus,the scaling behaviors of rocks under dynamic loading conditions can be captured by the proposed fractal-statistical scaling model.The sensitivity analysis indicates that the nominal strength difference becomes more obvious with a higher strain rate,larger fractal dimension,smaller micro-crack size or lower micro-crack intensity.Therefore,the proposed scaling model has the potential to capture the scaling behaviors considering the thermal effect,weathering effect,anisotropic characteristic etc.,as the proposed scaling model incorporated model parameters with physical meaning.The findings of this study are of fundamental importance to understand the scaling behaviors of rock under dynamic loading condition,and thus would facilitate the appropriate design of rock engineering. 展开更多
关键词 Size effect strain rate Uniaxial compressive strength(UCS) Dynamic fracture mechanics
下载PDF
Effect of Strain Rate on Tensile Behavior of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} Lead-Free Solder Alloys
10
作者 Shihab Uddin Md. Abdul Gafur Mohammad Obaidur Rahman 《Materials Sciences and Applications》 CAS 2023年第4期273-283,共11页
The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carrie... The tensile properties of Sn-9Zn-xAg-ySb;{(x, y) = (0.2, 0.6), (0.2, 0.8), (0.6, 0.2), (0.8, 0.2)} lead-free solders were investigated. All the test samples were annealed at 150°C for 1 hour. The tests are carried out at room temperature at the strain rate of 4.17 × 10<sup>-3</sup> s<sup>-1</sup>, 20.85 × 10<sup>-3</sup> s<sup>-1</sup>, and 208.5 × 10<sup>-3</sup> s<sup>-1</sup>. It is seen that the tensile strength increases and the ductility decrease with increasing the strain rate over the investigated range. From the strain rate change test results, the strain sensitivity values are found in the range of 0.0831 to 0.1455 due to the addition of different alloying elements. 展开更多
关键词 Lead-Free Solder strain rate strain Sensitivity DUCTILITY Tensile Properties
下载PDF
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
11
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite strain Finite Deformation Nonlinear Dynamics Dynamic Bifurcation Ordered rate Theories
下载PDF
Instantaneous Creep in Face-centered Cubic Metals at Ultra- low Strain Rates by a High-resolution Strain Measurement
12
作者 SHEN Junjie Ikeda Kenichi +1 位作者 Hata Satoshi Nakashima Hideharu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1096-1100,共5页
Instantaneous creep in face-centered cubic metals, 5N Al(99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultra- low strain rat... Instantaneous creep in face-centered cubic metals, 5N Al(99.999%), 2N Al (99%) and 4N Cu (99.99%) with different grain sizes, was firstly investigated by sudden stress-change experiments at ultra- low strain rates ε ≤10-10 s-1 and temperature T 〈 0.32 Tn. The experimental results indicate that the observed instantaneous creep is strongly dependent on grain size, the concentration of impurity, and stacking fault energy. Creep in high-purity aluminum, 5N Al, with a very large grain size, d 〉 1600μm, shows non-viscous behavior, and is controlled by the recovery of dislocations in the boundary of dislocation cells. On the other hand, for 5N A1 with a small grain size, d=30μm, and low-purity aluminum, 2N A1, with d8= 25μm, creep shows viscous behavior and may be related to 'low temperature grain boundary sliding'. For high-purity copper, 4N Cu, with d= 40 grn and lower stacking fault energy, creep shows a non-viscous behavior, and is controlled by the recovery process of dislocations. For all of the samples, creep shows anelastic behavior. 展开更多
关键词 face-centered cubic metals instantaneous creep ultra-low strain rate high strain resolution measurement
下载PDF
Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates 被引量:8
13
作者 Guo, Qingmiao Li, Defu +3 位作者 Peng, Haijian Guo, Shengli Hu, Jie Du, Peng 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期215-220,共6页
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot... The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate. 展开更多
关键词 nucleation mechanisms dynamic recrystallization Inconel 625 superalloy deformation strain rate
下载PDF
EFFECT OF STRAIN RATE(?) ON STRAIN HARDENING EXPONENT n OF SOME METALLIC MATERIALS 被引量:4
14
作者 TANG Changguo, ZHU Jinhua, ZHANG Yuhua, ZHOU HuijiuResearch Institute for Strength of Metals. Xi’an Jiaotong University. Xi’an. China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1994年第3期183-186,共4页
Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (... Variable strain rate tension tests for 4 metallic materials show that as the strain rate in creases the strain hardening exponent n decreases. The trend follows a two stage linear relation between n and Ig (?). When (?) < (?)cp, i.e. under quasi-static loading, n can be considered as a constant, but when (?)>(?)cp, n decreases rapidly till an ideal plastic state. n = 0. The characterizations and mechanisms of softening induced by high (?) are discussed. 展开更多
关键词 strain rate strain hardening EXPONENT metallic material
下载PDF
Effect of Strain Rate on Ultimate Strength and Fractograph in Tungsten Alloy 被引量:5
15
作者 唐长国 朱金华 周惠久 《Rare Metals》 SCIE EI CAS CSCD 1998年第3期39-43,共5页
The effect of strain rate on ultimate strength and fractograph was investigated for tungsten alloy with four different technologies. As the strain rate rises, the ultimate strength increases and morphology of fracture... The effect of strain rate on ultimate strength and fractograph was investigated for tungsten alloy with four different technologies. As the strain rate rises, the ultimate strength increases and morphology of fracture surface gradually transits from detachment of interface between W pellets and matrices to cleavage of W pellets. Meanwhile, low strength tungsten alloy has higher sensitivity to strain rate. 展开更多
关键词 strain rate Tungsten alloy Ultimate strength FRACTOGRAPH
下载PDF
Effect of Temperature and Strain Rate on Dynamic Properties of Low Silicon TRIP Steel 被引量:5
16
作者 TIAN Rong LI Lin +2 位作者 B C De Cooman WEI Xi-chen SUN Peng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2006年第3期51-56,共6页
The dynamic tensile test of 0.11C-0.62Si-1.65Mn TRIP steel was carried out at different strain rates and test temperatures. The results show that both temperature and strain rate affect the retained austenite transfor... The dynamic tensile test of 0.11C-0.62Si-1.65Mn TRIP steel was carried out at different strain rates and test temperatures. The results show that both temperature and strain rate affect the retained austenite transformation. At high strain rates, the uniform elongation decreases, whereas the total elongation and energy absorption increase. The tensile strength is less strain rate sensitive. With raising test temperature, the tensile strength is reduced and the mechanical properties generally deteriorate, especially at 110℃,However, excellent mechanical properties were obtained at 50℃ and 75℃. 展开更多
关键词 TRIP retained austenite dynamic tensile test strain rate tensile strength
下载PDF
High strain rate superplasticity of rolled AZ91 magnesium alloy 被引量:6
17
作者 WANG Qudong WEI Yinhong +1 位作者 Y. Chino M. Mabuchi 《Rare Metals》 SCIE EI CAS CSCD 2008年第1期46-49,共4页
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^... The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism. 展开更多
关键词 AZ91 magnesium alloy high strain rate superplasticity ROLLING grain boundary sliding
下载PDF
Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper 被引量:4
18
作者 Xin-hua Liu Hai-you Huang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期687-695,共9页
Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to th... Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate. 展开更多
关键词 porous materials COPPER directional solidification strain rate sensitivity deformation modes stress-strain curves
下载PDF
High strain rate superplasticity of SiC whisker reinforced pure aluminum composites 被引量:4
19
作者 Xu Xiaojing(许晓静) Zhao Changzheng(赵昌正) +2 位作者 Zhang Di(张 荻) Shi Zhongliang(施忠良) Wu Renjie(吴人洁) 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第3期500-504,共5页
A β SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate superplasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with ... A β SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate superplasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with a low extrusion ratio and rolling. The composites exhibite a total elongation of 220%~380% in the initial strain rates within 1.0×10 -2 ~1.0×10 -1 s -1 and at 893~903 K. According to differential thermal analysis(DTA) and microstructure observation, it is concluded that an appropriately small amount of liquid phase is necessary to cause a good high strain rate superplasticity in aluminum matrix composites in addition to fine and uniform microstructure. 展开更多
关键词 high strain rate SUPERPLASTICITY ALUMINUM matrix COMPOSITES pressure INFILTRATION
下载PDF
Research on the influences of confining pressure and strain rate on NEPE propellant:Experimental assessment and constitutive model 被引量:10
20
作者 Hui Li Jin-sheng Xu +3 位作者 Jia-ming Liu Ting-yu Wang Xiong Chen Hong-wen Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1764-1774,共11页
In order to study the influences of confining pressure and strain rate on the mechanical properties of the Nitrate Ester Plasticized Polyether(NEPE)propellant,uniaxial tensile tests were conducted using the selfmade c... In order to study the influences of confining pressure and strain rate on the mechanical properties of the Nitrate Ester Plasticized Polyether(NEPE)propellant,uniaxial tensile tests were conducted using the selfmade confining pressure system and material testing machine.The stress-strain responses of the NEPE propellant under different confining pressure conditions and strain rates were obtained and analyzed.The results show that confining pressure and strain rate have a remarkably influence on the mechanical responses of the NEPE propellant.As confining pressure increases(from 0 to 5.4 MPa),the maximum tensile stress and ultimate strain increase gradually.With the coupled effects of confining pressure and strain rate,the value of the maximum tensile stress and ultimate strain at 5.4 MPa and 0.0667 s^(-1)is 2.03 times and 2.19 times of their values under 0 MPa and 0.00333 s^(-1),respectively.Afterwards,the influence mechanism of confining pressure on the NEPE propellant was analyzed.Finally,based on the viscoelastic theory and continuous damage theory,a nonlinear constitutive model considering confining pressure and strain rate was developed.The damage was considered to be rate-dependent and pressuredependent.The constitutive model was validated by comparing experimental data with predictions of the constitutive model.The whole maximum stress errors of the model predictions are lower than 4%and the corresponding strain errors are lower than 7%.The results show that confining pressure can suppress the damage initiation and evolution of the NEPE propellant and the nonlinear constitutive model can describe the mechanical responses of the NEPE propellant under various confining pressure conditions and strain rates.This research can lay a theoretical foundation for analyzing the structural integrity of propellant grain accurately under working pressure loading. 展开更多
关键词 Confining pressure strain rate NEPE propellant Constitutive model DAMAGE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部