There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast...There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.展开更多
In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting dir...In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed.展开更多
This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonan...This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonant cavities with a center frequency of 345 GHz and a 7% bandwidth.The final design fulfills the desired specifications and presents the minimum insertion loss of 1.55 d B and the return loss of less than 15 d B at 345 GHz.The stop-band rejection is50 d B off the center frequency about 30 GHz,which means it has a good performance of high stop-band suppression.Compared with the recent development of THz filters,this filter possesses the characteristic of simple structure and is easy to machining.展开更多
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg...During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.展开更多
In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modul...In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.展开更多
The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account...The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.展开更多
Cerium–lanthanum alloys are the main component of nickel–metal hydride batteries,and they are thus an important material in the greenenergy industry.However,these alloys have very strong chemical activity,and their ...Cerium–lanthanum alloys are the main component of nickel–metal hydride batteries,and they are thus an important material in the greenenergy industry.However,these alloys have very strong chemical activity,and their surfaces are easily oxidized,leading to great difficulties in their application.To improve the corrosion resistance of cerium–lanthanum alloys,it is necessary to obtain a nanoscale surface with low roughness.However,these alloys can easily succumb to spontaneous combustion during machining.Currently,to inhibit the occurrence of fire,machining of this alloy in ambient air needs to be conducted at very low cutting speeds while spraying the workpiece with a large amount of cutting fluid.However,this is inefficient,and only a very limited range of parameters can be optimized at low cutting speeds;this restricts the optimization of other cutting parameters.To achieve ultraprecision machining of cerium–lanthanum alloys,in this work,an auxiliary machining device was developed,and its effectiveness was verified.The results show that the developed device can improve the cutting speed and obtain a machined surface with low roughness.The device can also improve the machining efficiency and completely prevent the occurrence of spontaneous combustion.It was found that the formation of a build-up of swarf on the cutting tool is eliminated with high-speed cutting,and the surface roughness(Sa)can reach 5.64 nm within the selected parameters.Finally,the oxidation processes of the cerium–lanthanum alloy and its swarf were studied,and the process of the generation of oxidative products in the swarf was elucidated.The results revealed that most of the intermediate oxidative products in the swarf were Ce^(3+),there were major oxygen vacancies in the swarf,and the final oxidative product was Ce^(4+).展开更多
Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed pa...Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.展开更多
The surface finish quality is critical to the service performance of a machined part,and single-point diamond ultra-precision machining can achieve excellent surface quality for many engineering materials.This study s...The surface finish quality is critical to the service performance of a machined part,and single-point diamond ultra-precision machining can achieve excellent surface quality for many engineering materials.This study studied the problem of predicting the surface roughness for titanium alloy workpieces in ultra-precision machining.Process data and surface roughness measurement results were obtained during end-face machining experiments.A deep learning neural network model was built based on the ResNet-50 architecture to predict surface roughness.We propose increasing prediction accuracy by using the energy ratio difference(ERD)as a stability feature that can be extracted using fast iterative variational mode decomposition(FI-VMD).The roughness value obtained with an analytic model was also used as an input feature of the prediction model.The prediction accuracy of the proposed approach was depicted to be improved by 8.7%with the two newly introduced roughness predictors.The influence of the tool parameters on the prediction accuracy was investigated,and the proposed hybrid-driven model exhibited higher robustness to errors of the tool parameters than the analytic roughness model.展开更多
Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However,...Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.展开更多
The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT),and the surface grain is refined from the average size of 9550.0 nm to287.9,216.3,150.5,126.3,25.8 nm by d...The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT),and the surface grain is refined from the average size of 9550.0 nm to287.9,216.3,150.5,126.3,25.8 nm by different effective treatment currents,respectively.The ultraprecision turning experiments are carried out on the processed workpiece after CUEPT.The experimental results show that the average cutting force increases with the decrease of surface grain size.Moreover,a mathematical model that can describe the relationship between grain size and cutting force is established,and the calculated results match the experimental results well.The calculated results also indicate that the variation of cutting force caused by the same variation of grain size decreases as the degree of grain refinement increases.Finally,the influence mechanism of grain refinement on cutting force is analyzed.The improvement of stability of grain boundaries and the increase of number of grain boundaries cause the increase of cutting force after grain refinement.展开更多
The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius an...The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius and wear.This study therefore investigated the onmachine measurement of tool nose radius on the order of hundreds of microns and wear on the order of a few microns to tens of microns during precision/ultra-precision machining using the edge reversal method.To provide the necessary replication,pure aluminum and pure copper soft metal substrates were evaluated,with pure copper exhibiting superior performance.The feasibility of the measurement method was then demonstrated by evaluating the replication accuracy using a 3D surface topography instrument;the measurement error was only 0.1%.The wear of the cutting tool was measured using the proposed method to obtain the maximum values for tool arc wear,flank wear,and wear depth of 3.4 lm,73.5 lm and 3.7 lm,respectively.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of...Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems eng...Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the develop- ments of ultra-precision machining technologies, espe- cially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.展开更多
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ...A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy.展开更多
Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precis...Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.展开更多
Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the ...Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.展开更多
基金the Research Committee of The Hong Kong Polytechnic University and the Innovation Technology Commission of The Hong Kong SAR Government for their financial support of the Hong Kong Partner State Key Laboratory of Ultra-Precision Machining Technology
文摘There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
基金supported by the NSF under grant No. CMMI-1844821。
文摘In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed.
基金supported by the National Natural Science Foundation of China under Grant No.61434006
文摘This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonant cavities with a center frequency of 345 GHz and a 7% bandwidth.The final design fulfills the desired specifications and presents the minimum insertion loss of 1.55 d B and the return loss of less than 15 d B at 345 GHz.The stop-band rejection is50 d B off the center frequency about 30 GHz,which means it has a good performance of high stop-band suppression.Compared with the recent development of THz filters,this filter possesses the characteristic of simple structure and is easy to machining.
文摘During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2004AA8042111)Program for "IRTXMU".
文摘In order to improve machining accuracy and efficiency, a software-controlled system of ultra-precision machining for axisymmetric aspheric mirror, using techniques of error compensation, remote transmission and modularization, is designed based on industrial PC, Windows 2000 work platform and Visual Basic 6.0. By experiments, this system realizes functions of ultra-precision machining, machining error compensation, remote data transmission and automatic data transformation among first machining, compensation machining and accuracy measurement. The actual application shows that error compensation improves machining accuracy, remote transmission improves machining efficiency while modularization avoids repeated work and improves design efficiency. Therefore, the system has met ultra-precision machining need for aspheric mirror.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51305278)the Liaoning Revitalization Talents Program,China(GrantNo.XLYC2007133)the Natural Science Foundation of Liaoning Province,China(GrantNo.2020-MS-213).
文摘The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.
基金This study was supported by the Science Challenge Project(Grant No.TZ2018006-0201-01)the National Natural Science Foundation of China(Grant Nos.51605327 and 52035009).
文摘Cerium–lanthanum alloys are the main component of nickel–metal hydride batteries,and they are thus an important material in the greenenergy industry.However,these alloys have very strong chemical activity,and their surfaces are easily oxidized,leading to great difficulties in their application.To improve the corrosion resistance of cerium–lanthanum alloys,it is necessary to obtain a nanoscale surface with low roughness.However,these alloys can easily succumb to spontaneous combustion during machining.Currently,to inhibit the occurrence of fire,machining of this alloy in ambient air needs to be conducted at very low cutting speeds while spraying the workpiece with a large amount of cutting fluid.However,this is inefficient,and only a very limited range of parameters can be optimized at low cutting speeds;this restricts the optimization of other cutting parameters.To achieve ultraprecision machining of cerium–lanthanum alloys,in this work,an auxiliary machining device was developed,and its effectiveness was verified.The results show that the developed device can improve the cutting speed and obtain a machined surface with low roughness.The device can also improve the machining efficiency and completely prevent the occurrence of spontaneous combustion.It was found that the formation of a build-up of swarf on the cutting tool is eliminated with high-speed cutting,and the surface roughness(Sa)can reach 5.64 nm within the selected parameters.Finally,the oxidation processes of the cerium–lanthanum alloy and its swarf were studied,and the process of the generation of oxidative products in the swarf was elucidated.The results revealed that most of the intermediate oxidative products in the swarf were Ce^(3+),there were major oxygen vacancies in the swarf,and the final oxidative product was Ce^(4+).
基金supported by the State Key Laboratories in Hong Kong,China,from the Innovation and Technology Commission(project code:BBR3)of the Government of the Hong Kong Special Administrative Region,Chinathe Research Office(project codes:BBXM and BBX)of The Hong Kong Polytechnic University,China+1 种基金the Project of Strategic Importance(project codes:1-ZE0G and SBBD)of The Hong Kong Polytechnic University,Chinaand the Research Committee(project code:RMAC)of The Hong Kong Polytechnic University,China。
文摘Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.
基金supported by the National Key Research and Development Project of China(Grant No.2020YFB1710400)the National Natural Science Foundation of China(Grant No.52005205)the National Science Fund for Distinguished Young Scholars(Grant No.52225506)。
文摘The surface finish quality is critical to the service performance of a machined part,and single-point diamond ultra-precision machining can achieve excellent surface quality for many engineering materials.This study studied the problem of predicting the surface roughness for titanium alloy workpieces in ultra-precision machining.Process data and surface roughness measurement results were obtained during end-face machining experiments.A deep learning neural network model was built based on the ResNet-50 architecture to predict surface roughness.We propose increasing prediction accuracy by using the energy ratio difference(ERD)as a stability feature that can be extracted using fast iterative variational mode decomposition(FI-VMD).The roughness value obtained with an analytic model was also used as an input feature of the prediction model.The prediction accuracy of the proposed approach was depicted to be improved by 8.7%with the two newly introduced roughness predictors.The influence of the tool parameters on the prediction accuracy was investigated,and the proposed hybrid-driven model exhibited higher robustness to errors of the tool parameters than the analytic roughness model.
基金Acknowledgements The authors would like to acknowledge the financial support from the National Natural Science of China (General Program) (Grant No. 51575083), the Major Research plan of the National Natural Science Foundation of China (Grant No. 91323302), the Science Fund for Creative Research Groups (Grant No. 51621064), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51505063).
文摘Hard and brittle materials, such as silicon, SiC, and optical glasses, are widely used in aerospace, military, integrated circuit, and other fields because of their excellent physical and chemical properties. However, these materials display poor machinability because of their hard and brittle properties. Damages such as surface micro-crack and subsurface damage often occur during machining of hard and brittle materials. Ultra-precision machining is widely used in processing hard and brittle materials to obtain nanoscale machining quality. However, the theoretical mechanism underlying this method remains unclear. This paper provides a review of present research on the molecular dynamics simulation of ultra-precision machining of hard and brittle materials. The future trends in this field are also discussed.
基金supported by National Natural Science Foundation of China(No.51875579)the Fundamental Research Fund for the Central Universities,China(No.19CX02023A)+2 种基金the Major Research Project of Shandong Province,China(No.2019GGX104068)the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province,China(No.2019KJB016)Source Innovation Project of Qingdao West Coast New Area,China(No.2020-82)。
文摘The nickel-based superalloy Inconel 718 is treated with Coupled Ultrasonic and Electric Pulse Treatment(CUEPT),and the surface grain is refined from the average size of 9550.0 nm to287.9,216.3,150.5,126.3,25.8 nm by different effective treatment currents,respectively.The ultraprecision turning experiments are carried out on the processed workpiece after CUEPT.The experimental results show that the average cutting force increases with the decrease of surface grain size.Moreover,a mathematical model that can describe the relationship between grain size and cutting force is established,and the calculated results match the experimental results well.The calculated results also indicate that the variation of cutting force caused by the same variation of grain size decreases as the degree of grain refinement increases.Finally,the influence mechanism of grain refinement on cutting force is analyzed.The improvement of stability of grain boundaries and the increase of number of grain boundaries cause the increase of cutting force after grain refinement.
基金the financial support provided by the National Key Research and Development Program(Grant No.2018YFA0702900)the National Natural Science Foundation of China(Grant No.51975096).
文摘The tool state exerts a strong influence on surface quality and profile accuracy during precision/ultraprecision machining.However,current on-machine measurement methods cannot precisely obtain the tool nose radius and wear.This study therefore investigated the onmachine measurement of tool nose radius on the order of hundreds of microns and wear on the order of a few microns to tens of microns during precision/ultra-precision machining using the edge reversal method.To provide the necessary replication,pure aluminum and pure copper soft metal substrates were evaluated,with pure copper exhibiting superior performance.The feasibility of the measurement method was then demonstrated by evaluating the replication accuracy using a 3D surface topography instrument;the measurement error was only 0.1%.The wear of the cutting tool was measured using the proposed method to obtain the maximum values for tool arc wear,flank wear,and wear depth of 3.4 lm,73.5 lm and 3.7 lm,respectively.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
文摘Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
文摘Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the develop- ments of ultra-precision machining technologies, espe- cially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
基金This project is supported by Foundation of Xiamen Univer sity of China for Scholars Return from Abroad (No.08003).
文摘A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy.
文摘Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2008AA042503)the National Science and Technology Major Project(Grant No.2013ZX04006011-201)
文摘Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.