Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time re...Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.展开更多
As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources,nonlinear crystals of large aperture are demanded for high-energy amplifiers.Yttrium calc...As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources,nonlinear crystals of large aperture are demanded for high-energy amplifiers.Yttrium calcium oxyborate(YCa_(4)O(BO_(3))_(3),YCOB)is capable of being grown with apertures exceeding 100 mm,which makes it possible for application in systems of petawatt scale.In this paper,we experimentally demonstrated for the first time to our knowledge,an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm.Based on the SG-II 5 PW facility,amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%.A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs.The near-field and wavefront aberration represented excellent characteristics,which were comparable with those achieved in lithium triborate-based amplifiers.These results verified the great potential for YCOB utilization in the future.展开更多
To synchronize a control signal with a packet signal in response to changing timing jitter, we investigate ultra-short pulse tracking by using wavelength dispersion for a short-time optical buffer in an optical router.
基金supported by Key Program of Natural Science Foundation of Educational Commission of Sichuan Province, China (GrantNo 2006A124)the Fundamental Application Research Project of the Department of Science and Technology of Sichuan Province,China (Grant No 05JY029-084)the Foundation of Science and Technology Development of Chengdu University of Information Technology, China (Grant No KYTZ20060604)
文摘Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.
基金partially supported by the Shanghai Natural Science Foundation(No.20ZR1464400)the National Natural Science Foundation of China(NSFC)(Nos.12074399,12204500 and 12004403)+4 种基金the Key Projects of Intergovernmental International Scientific and Technological Innovation Cooperation(No.2021YFE0116700)the Shanghai Sailing Program(No.22YF1455300)the International Partnership Program of the Chinese Academy of Sciences(No.181231KYSB20170022)the Chinese Academy of Sciences(Nos.CXJJ-21S015,XDA25020311 and XDA25020105)NSAF(No.U1930126)
文摘As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources,nonlinear crystals of large aperture are demanded for high-energy amplifiers.Yttrium calcium oxyborate(YCa_(4)O(BO_(3))_(3),YCOB)is capable of being grown with apertures exceeding 100 mm,which makes it possible for application in systems of petawatt scale.In this paper,we experimentally demonstrated for the first time to our knowledge,an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm.Based on the SG-II 5 PW facility,amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%.A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs.The near-field and wavefront aberration represented excellent characteristics,which were comparable with those achieved in lithium triborate-based amplifiers.These results verified the great potential for YCOB utilization in the future.
文摘To synchronize a control signal with a packet signal in response to changing timing jitter, we investigate ultra-short pulse tracking by using wavelength dispersion for a short-time optical buffer in an optical router.