The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ...The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs gener...A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.展开更多
Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin s...Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ...We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.展开更多
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution...Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.展开更多
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ...We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.展开更多
The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under extreme conditions.However,accurate determination of the spatial and temporal ...The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under extreme conditions.However,accurate determination of the spatial and temporal characteristics of a laser pulse is still a great challenge,especially when laser powers higher than hundreds of terawatts are involved.In this paper,by utilizing the radiative spin-flip effect,we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense lasers with peak intensities around 10^(20)–10^(22) W/cm^(2).With three shots,our machine-learning-assisted model can predict,simultaneously,the pulse duration,peak intensity,and focal radius of a focused Gaussian ultrafast ultraintense laser(in principle,the profile can be arbitrary)with relative errors of 0.1%–10%.The underlying physics and an alternative diagnosis method(without the assistance of machine learning)are revealed by the asymptotic approximation of the final spin degree of polarization.Our proposed scheme exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters.Accurate measurements of ultrafast ultraintense laser parameters will lead to much higher precision in,for example,laser nuclear physics investigations and laboratory astrophysics studies.Robust machine learning techniques may also find applications in more general strong-field physics scenarios.展开更多
The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying dur...The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying durations,we discovered that lasers with good dispersion compensation are capable of producing a broad spectrum of high harmonics.As the pulse duration is further compressed,several interference peaks appear in the broad spectrum.Moreover,we conducted simulations using the semiconductor Bloch equation,considering the effect of Berry curvature,to better understand this process.Our work provides a valuable approach for studying HHG by few-cycle laser pulses in solid materials,expanding the application of HHG in attosecond physics.展开更多
Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make i...Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.展开更多
This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been ...This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices.展开更多
This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of...This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of synthesis is generally called pulsed laser ablation in liquid (PLAL). The presence of carbon structures in the solution contributed to the carbon content in the produced Ti-based nanomaterials. The atomic composition of the produced nanostructures was analyzed using SEM-EDS, while TEM micrographs revealed the formation of spherical TiC and core-shell nanostructures ranging from 40 to 100 nm. The identification of atomic planes by HRTEM confirmed a 10 nm diameter C-shell with a graphite structure surrounding the Ti-core. Raman spectroscopy allowed for the identification of D and G peaks for graphite and a Raman signal at 380 and 600 cm<sup>−1</sup>, assigned to TiC. The results contribute to the state-of-the-art production of TiC and Ti-C core-shell nanostructures using the PLAL route.展开更多
The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned w...The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.展开更多
Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique...Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.展开更多
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ...Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.展开更多
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no...Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.展开更多
The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorptio...The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.展开更多
文摘The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020205)the program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics(Grant No.6142A04220108)。
文摘A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603300)the National Natural Science Foundation of China(Grant Nos.12175154,12205201,12005149,and 11975214)+1 种基金the Shenzhen Science and Technology Program(Grant No.RCYX20221008092851073)used under UK EPSRC Contract Nos.EP/G055165/1 and EP/G056803/1.
文摘Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金National Research Foundation of Korea,Grant/Award Numbers:2019H1D3A1A01071209,2021R1I1A1A01060380,2022R1A2C2010686,2022R1A4A3033528Korea Basic Science Institute,Grant/Award Numbers:2019R1A6C1010042,2021R1A6C103A427。
文摘We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers.
文摘Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082)Fundamental Research Funds for the Central Universities (Grant No. 2021MS046)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020)。
文摘We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11874295,12022506,U2267204,11905169,12275209,11875219,and 12171383)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)+1 种基金the Foundation of Science and Technology on Plasma Physics Laboratory(Grant No.JCKYS2021212008)The work of Y.I.S.is supported by an American University of Sharjah Faculty Research(Grant No.FRG21).
文摘The rapid development of ultrafast ultraintense laser technology continues to create opportunities for studying strong-field physics under extreme conditions.However,accurate determination of the spatial and temporal characteristics of a laser pulse is still a great challenge,especially when laser powers higher than hundreds of terawatts are involved.In this paper,by utilizing the radiative spin-flip effect,we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense lasers with peak intensities around 10^(20)–10^(22) W/cm^(2).With three shots,our machine-learning-assisted model can predict,simultaneously,the pulse duration,peak intensity,and focal radius of a focused Gaussian ultrafast ultraintense laser(in principle,the profile can be arbitrary)with relative errors of 0.1%–10%.The underlying physics and an alternative diagnosis method(without the assistance of machine learning)are revealed by the asymptotic approximation of the final spin degree of polarization.Our proposed scheme exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters.Accurate measurements of ultrafast ultraintense laser parameters will lead to much higher precision in,for example,laser nuclear physics investigations and laboratory astrophysics studies.Robust machine learning techniques may also find applications in more general strong-field physics scenarios.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91850209 and 11974416)。
文摘The high harmonic generation(HHG)by few-cycle laser pulses is essential for research in strong-field solid-state physics.Through comparison of high harmonic spectra of solids generated by laser pulses with varying durations,we discovered that lasers with good dispersion compensation are capable of producing a broad spectrum of high harmonics.As the pulse duration is further compressed,several interference peaks appear in the broad spectrum.Moreover,we conducted simulations using the semiconductor Bloch equation,considering the effect of Berry curvature,to better understand this process.Our work provides a valuable approach for studying HHG by few-cycle laser pulses in solid materials,expanding the application of HHG in attosecond physics.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718700)the National Natural Science Foundation of China(Grant No.12174347)+1 种基金the Synergetic Extreme Condition User Facility(SECUF)the Center for Materials Genome。
文摘Ta As,the first experimentally discovered Weyl semimetal material,has attracted a lot of attention due to its high carrier mobility,high anisotropy,nonmagnetic properties and strong interaction with light.These make it an ideal candidate for the study of Weyl fermions and applications in quantum computation,thermoelectric devices,and photodetection.For further basic physics studies and potential applications,large-size and high-quality Ta As films are urgently needed.However,it is difficult to grow As-stoichiometry Ta As films due to the volatilization of As during the growth.To solve this problem,we attempted to grow Ta As films on different substrates using targets with different As stoichiometric ratios via pulsed laser deposition(PLD).In this work,we found that partial As ions of the Ga As substrate are likely to diffuse into the Ta As films during growth,which was preliminarily confirmed by structural characterization,surface topography and composition analysis.As a result,the As content in the Ta As film was improved and the Ta As phase was achieved.Our work presents an effective method for the fabrication of Ta As films using PLD,enabling possible use of the Weyl semimetal film for functional devices.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2022YFA1603903 and 2021YFA0718700)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340002)+3 种基金the National Natural Science Foundation of China(Grant Nos.61971415,51972012,11927808,119611410,11961141008,and 12274439)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB25000000)Beijing Natural Science Foundation(Grant No.Z190008)Basic Research Youth Team of Chinese Academy of Sciences(Grant No.2022YSBR-048).
文摘This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices.
文摘This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of synthesis is generally called pulsed laser ablation in liquid (PLAL). The presence of carbon structures in the solution contributed to the carbon content in the produced Ti-based nanomaterials. The atomic composition of the produced nanostructures was analyzed using SEM-EDS, while TEM micrographs revealed the formation of spherical TiC and core-shell nanostructures ranging from 40 to 100 nm. The identification of atomic planes by HRTEM confirmed a 10 nm diameter C-shell with a graphite structure surrounding the Ti-core. Raman spectroscopy allowed for the identification of D and G peaks for graphite and a Raman signal at 380 and 600 cm<sup>−1</sup>, assigned to TiC. The results contribute to the state-of-the-art production of TiC and Ti-C core-shell nanostructures using the PLAL route.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61574171, 61704127, 11875229,51872251, and 12027813)。
文摘The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.
基金the National Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308.
文摘Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.
基金the University of Tennessee Research Foundation and a grant from the National Natural Science Foundation of China(51575016).
文摘Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.
基金The authors gratefully acknowledge support by the Graduate School in Advanced Optical Technologies(SAOT)of the Friedrich–Alexander-University of Erlangen–Nürnberg,and the Bayerisches Laserzentrum GmbH.
文摘Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.
基金the Ministerial Level Advanced Research Foundation (ABAQ440261)
文摘The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.