期刊文献+
共找到125篇文章
< 1 2 7 >
每页显示 20 50 100
Theoretical analysis of ultra-short pulsed laser ablation of SiO_2 material based on a Coulomb explosion model
1
作者 林晓辉 任维松 《Journal of Southeast University(English Edition)》 EI CAS 2011年第3期261-265,共5页
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution... Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps. 展开更多
关键词 ultra-short pulsed laser Coulomb explosion nonequilibrium distribution material ablation
下载PDF
Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices 被引量:5
2
作者 Yongchao Yu Shi Bai +1 位作者 Shutong Wang Anming Hu 《Engineering》 SCIE EI 2018年第6期779-786,共8页
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ... Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing. 展开更多
关键词 ultra-short pulseD laser processing MICRODEVICES SUPERCAPACITOR Electronic TONGUE Surface-enhanced RAMAN spectroscopy
下载PDF
A review on glass welding by ultra-short laser pulses 被引量:6
3
作者 Kristian Cvecek Sarah Dehmel +1 位作者 Isamu Miyamoto Michael Schmidt 《International Journal of Extreme Manufacturing》 2019年第4期1-10,共10页
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no... Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers. 展开更多
关键词 USP glass welding ultra-short pulsed laser processing brittle materials glass joining
下载PDF
Taper Angle Correction in Cutting of Complex Micro-mechanical Contours with Ultra-Short Pulse Laser 被引量:5
4
作者 J. Auerswald A. Ruckli +3 位作者 T. Gschwilm P. Weber D. Diego-Vallejo H. Schliiter 《Journal of Mechanics Engineering and Automation》 2016年第7期334-338,共5页
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ... The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii. 展开更多
关键词 ultra-short pulse laser cutting kerf taper angle zero taper 5-axis micro machining.
下载PDF
Study on Ultra-Short Laser Pulse Ablation of Metals by Molecular Dynamics Simulation
5
作者 刘璇 王扬 赵丽杰 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期406-410,共5页
The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorptio... The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating. 展开更多
关键词 molecular dynamics simulation ultra-short laser pulse ablation potential function face-centered cubic metal
下载PDF
Heat Exchanging Process of Metal Target under Millisecond Pulsed Laser Shocking
6
作者 王洪礼 赵志培 +1 位作者 孙景 杨静 《Transactions of Tianjin University》 EI CAS 2013年第1期66-69,共4页
Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a li... Laser plays an important role in synthesizing nanometer material. A three-dimensional mathematical model is established in this paper when single pulsed millisecond laser shocks the surface of the metal target at a liquid-solid interface. By changing laser power density and target size, the temperature field variation of the metal target is investigated. Results show that the generation process of nanoparticles includes heating, melting and boiloff. 展开更多
关键词 laser shocking pulse heat exchanging
下载PDF
Cooling rate calibration and mapping of ultra-short pulsed laser modifications in fused silica by Raman and Brillouin spectroscopy
7
作者 Michael Bergler Kristian Cvecek +3 位作者 Ferdinand Werr Martin Brehl Dominique De Ligny Michael Schmidt 《International Journal of Extreme Manufacturing》 2020年第3期161-172,共12页
This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local... This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local cooling rate distribution in ultra-short pulsed(USP)laser modification.In order to determine the thermal history(e.g.cooling rate and fictive temperature)of fused silica,high-resolution inelastic light-scattering experiments(Raman and Brillouin spectroscopy)were investigated.Calibrations were performed and compared to the existing literature to quantify structural changes due to a change of fictive temperature.Compared to existing calibrations,this paper provides an extension to lower and higher cooling rates.Using this new set of calibrations,we characterized a USP laser modification in fused silica and calculated the local fictive temperature distribution.An equation relating the fictive temperature(Tf)to cooling rates is given.A maximum cooling rate of 3000 K min-1 in the glass transition region around 1200℃ was deduced from the Raman analysis.The Brillouin observations are sensitive to both the thermal history and the residual stress.By comparing the Raman and Brillouin observations,we extracted the local residual stress distribution with high spatial resolution.For the first time,combined Raman and Brillouin inelastic light scattering experiments show the local distribution of cooling rates and residual stresses(detailed behavior of the glass structure)in the interior and the surrounding of an USP laser modified zone. 展开更多
关键词 glass structure ultra-short pulsed laser fused silica cooling rate fictive temperature Raman spectroscopy Brillouin spectroscopy
下载PDF
Experimental investigation of bioheat transfer characteristics induced by pulsed-laser irradiation
8
作者 XiulanHuai JingYang +2 位作者 BaoziSun XiuliZhang DengyingLiu 《Journal of University of Science and Technology Beijing》 CSCD 2003年第5期64-68,共5页
An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, speci... An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation. 展开更多
关键词 pulseD-laser bio-materials heat transfer characteristic temperaturemeasurement
下载PDF
Effect of Lorentz local field correction on propagation of ultrashort laser pulse in one-dimensional para-nitroaniline (PNA) molecules 被引量:1
9
作者 周勇 苗泉 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期328-332,共5页
This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving n... This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density. 展开更多
关键词 Lorentz local field correction ultra-short laser pulse para-nitroaniline molecule Maxwell Bloch equations
下载PDF
The nonlinear response of Cattaneo-type thermal loading of a laser pulse on a medium using the generalized thermoelastic model 被引量:1
10
作者 Farshad Shakeriaski Maryam Ghodrat 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第4期286-297,共12页
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the imp... The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations. 展开更多
关键词 Thermal wave propagation Nonlinear generalized thermoelasticity Cattaneo’s heat conduction laser pulse heating
下载PDF
Pulsed-Laser Annealing of NiTi Shape Memory Alloy Thin Film
11
作者 S.K. Sadrnezhaad E. Rezvani +1 位作者 S. Sanjabi A.A. Ziaei Moayed 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期135-140,共6页
Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheat... Local annealing of amorphous NiTi thin films was performed by using an Nd:YAG 1064 nm wavelength pulsed laser beam. Raw samples produced by simultaneous sputter deposition from elemental Ni and Ti targets onto unheated Si (100) and Silica (111) substrates were used for annealing. Delicate treatment with 15.92 W/mm^2 power density resulted in crystallization of small spots; while 16.52 and 17.51 W/mm^2 power densities caused ablation of the amorphous layer. Optical microscopy, scanning electron microscopy, X-ray diffraction and atomic force microscopy were performed to characterize the microstructure and surface morphology of the amorphous/crystallized spot patterns. 展开更多
关键词 Local heat treatment NiTi thin film pulsed laser annealing Amorphous/crystallized spot composite
下载PDF
Dynamics of cooperative emissions in a cascade three-level molecular system driven by an ultrashort laser pulse
12
作者 刘纪彩 王春兴 +1 位作者 Gel’mukhanov Faris 王传奎 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4211-4217,共7页
This paper investigates the dynamics of cooperative emissions in a cascade three-level system driven by an ultra, short laser pulse by solving numerically the full-wave Maxwell-Bloch equations. The 4, 4'-bis(dimethy... This paper investigates the dynamics of cooperative emissions in a cascade three-level system driven by an ultra, short laser pulse by solving numerically the full-wave Maxwell-Bloch equations. The 4, 4'-bis(dimethylamino) stilbene molecule is used as the model molecule because of its strong two-photon absorption property. The two-colour cooperative emissions are studied as functions of molecular number density and dephasing rate of the dipole coherence. The propagation effects on the evolution of the cooperative radiations are also taken into account. The cooperative radiations are enhanced for large number density of the molecule, while the fast dephasing of the dipole coherence reduces the intensity of the cooperative radiations and delays the emission times or even inhibits the formation of the emissions. The delay time of the radiation decreases with the increase of the molecular number density and the propagation distance. 展开更多
关键词 SUPERFLUORESCENCE ultra-short laser pulse 4 4'-bis(dimethylamino) stilbene organic molecule Maxwell-Bloch equations
下载PDF
Features of Excitation of a Two-Level System by Short Nonresonance Laser Pulses
13
作者 Valeriy Alexandrovich Astapenko Vitaliy Anatoljevich Bagan 《Journal of Physical Science and Application》 2013年第4期269-277,共9页
This paper is devoted to theoretical investigation of characteristic features arising during excitation by short nonresonance laser pulses. The treatment is made within the applicability of perturbation is given to th... This paper is devoted to theoretical investigation of characteristic features arising during excitation by short nonresonance laser pulses. The treatment is made within the applicability of perturbation is given to the dependence of total excitation probability from eigenfrequency of TLS. Various laser pulse shapes of TLS on the pulse duration for different detuning are considered. two-level system (TLS) approach. Main attention of carrier laser frequency 展开更多
关键词 ultra-short laser pulse two-level system photo-excitation.
下载PDF
Phase structure of sputtered Ta coating and its ablation behavior by laser pulse heating(LPH) 被引量:3
14
作者 Yunsong Niu Lingling Xing +4 位作者 Feng Yang Huawei Li Minghui Chen Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第6期7-17,共11页
Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphou... Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphous Ta→αandβdual phase→singleαphase.After LPH course,micro structure of Ta coating shows intact,only a few cracks emerge after 100 laser pulses,exhibiting thin HAZ but thick Fe/Ta ICZ,without martensitic transformation.For the electrodeposited Cr coating,continuous thermal stresses produce many extra micro-crack,substrate oxidation and martensitic transformation,leading to crack propagations and final bulk delamination,without any ICZ. 展开更多
关键词 Sputtered Ta coating Phase structure laser pulse heating Inter-connected zone(ICZ) heat-affected zone(HAZ) Ablation
原文传递
Effects of laser pulse heating of copper photocathodes on high-brightness electron beam production at blowout regime
15
作者 郑连敏 杜应超 +1 位作者 唐传祥 盖炜 《Chinese Physics C》 SCIE CAS CSCD 2017年第6期154-161,共8页
Producing high-brightness and high-charge(〉100 pC) electron bunches at blowout regime requires ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed i... Producing high-brightness and high-charge(〉100 pC) electron bunches at blowout regime requires ultrashort laser pulses with high fluence. The effects of laser pulse heating of the copper photocathode are analyzed in this paper. The electron and lattice temperature is calculated using an improved two-temperature model, and an extended Dowell-Schmerge model is employed to calculate the thermal emittance and quantum efficiency. A timedependent growth of the thermal emittance and the quantum efficiency is observed. For a fixed amount of charge,the projected thermal emittance increases with decreasing laser radius, and this effect should be taken into account in laser optimization at blowout regime. Moreover, laser damage threshold fluence is simulated, showing that the maximum local fluence should be less than 40 mJ/cm^2 to prevent damage to the cathode. 展开更多
关键词 laser pulse heating photocathode two-temperature model blowout regime thermal emittance quantum efficiency
原文传递
Distortions in focusing laser pulses due to spatio-temporal couplings:an analytic description
16
作者 Klaus Steiniger Fabia Dietrich +11 位作者 Daniel Albach Michael Bussmann Arie Irman Markus Loeser Richard Pausch Thomas Püschel Roland Sauerbrey Susanne Schöbel Ulrich Schramm Mathias Siebold Karl Zeil Alexander Debus 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2024年第3期20-40,共21页
In ultra-short laser pulses,small changes in dispersion properties before the final focusing mirror can lead to severe pulse distortions around the focus and therefore to very different pulse properties at the point o... In ultra-short laser pulses,small changes in dispersion properties before the final focusing mirror can lead to severe pulse distortions around the focus and therefore to very different pulse properties at the point of laser±matter interaction,yielding unexpected interaction results.The mapping between far-and near-field laser properties intricately depends on the spatial and angular dispersion properties as well as the focal geometry.For a focused Gaussian laser pulse under the influence of angular,spatial and group-delay dispersion,we derive analytical expressions for its pulse-front tilt,duration and width from a fully analytic expression for its electric field in the time±space domain obtained with scalar diffraction theory.This expression is not only valid in and near the focus but also along the entire propagation distance from the focusing mirror to the focus.Expressions relating angular,spatial and group-delay dispersion before focusing at an off-axis parabola,where they are well measurable,to the respective values in the pulse’s focus are obtained by a ray tracing approach.Together,these formulas are used to show in example setups that the pulse-front tilts of lasers with small initial dispersion can become several tens of degrees larger in the vicinity of the focus while being small directly in the focus.The formulas derived here provide the analytical foundation for observations previously made in numerical experiments.By numerically simulating Gaussian pulse propagation and measuring properties of the pulse at distances several Rayleigh lengths off the focus,we verify the analytic expressions. 展开更多
关键词 group-delay dispersion pulse-front tilt spatio-temporal couplings third-order dispersion ultra-short laser pulses
原文传递
A Review on Fiber Lasers 被引量:3
17
作者 Lin Jintong Lu Dan Dai Yitang 《China Communications》 SCIE CSCD 2012年第8期1-15,共15页
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi... After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper. 展开更多
关键词 fiber laser rare earth doped fiber continuous wave fiber laser ultra-short pulse fiber laser
下载PDF
Formation mechanism of bifurcation in mode-locked class-B laser
18
作者 J.Jahanpanah M.Rezazadeh A.A.Rahdar 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期197-203,共7页
The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incohere... The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations. 展开更多
关键词 BIFURCATION multi-mode laser mode-locking process ultra-short pulse
下载PDF
Experimental Study and Heat Transfer Analysis on the Boiling of Saturated Liquid Nitrogen under Transient Pulsed Laser Irradiation
19
作者 ZhaoyiDONG XiulanHUAI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第1期62-68,共7页
The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the satura... The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2's boiling behavior under such conditions. Also, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experiments indicated that an explosive boiling happened within LN2 by the laser heating, and a conventional boiling followed up after the newly-defined changeover time. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of the bubbles in the bubble cluster induced by the explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism. 展开更多
关键词 explosive boiling pulsed laser heating liquid nitrogen changeover time.
原文传递
飞秒激光脉冲作用熔石英的超快传热动力学研究
20
作者 余方锐 杜广庆 +3 位作者 Waqas AHMAD 陆宇 杨青 陈烽 《应用光学》 CAS 北大核心 2024年第3期529-536,共8页
飞秒激光具有超短脉冲宽度、超高峰值功率的特点,飞秒激光与物质作用表现出的非线性吸收和低热扩散特性,使其在高精密微纳器件加工中有着重要的应用前景。建立了针对飞秒激光脉冲与熔石英作用的瞬态光电离以及非平衡传热的超快动力学模... 飞秒激光具有超短脉冲宽度、超高峰值功率的特点,飞秒激光与物质作用表现出的非线性吸收和低热扩散特性,使其在高精密微纳器件加工中有着重要的应用前景。建立了针对飞秒激光脉冲与熔石英作用的瞬态光电离以及非平衡传热的超快动力学模型。通过数值求解该模型获得了飞秒激光单脉冲作用熔石英的载流子密度和非平衡电子与声子温度的时空演化;得到了在非平衡态条件下,电声耦合时间随激光能量密度、脉冲宽度的近线性调控规律。进一步研究得到了瞬态电子热导、热容、电声耦合系数的变化规律,并对上述模拟现象进行了分析和探讨。 展开更多
关键词 飞秒激光脉冲 瞬态光电离 超快传热 双温模型
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部