期刊文献+
共找到496篇文章
< 1 2 25 >
每页显示 20 50 100
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
1
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
2
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model
3
作者 R.Surendran Youseef Alotaibi Ahmad F.Subahi 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3371-3386,共16页
High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb... High precision and reliable wind speed forecasting have become a challenge for meteorologists.Convective events,namely,strong winds,thunderstorms,and tornadoes,along with large hail,are natural calamities that disturb daily life.For accurate prediction of wind speed and overcoming its uncertainty of change,several prediction approaches have been presented over the last few decades.As wind speed series have higher volatility and nonlinearity,it is urgent to present cutting-edge artificial intelligence(AI)technology.In this aspect,this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning(IWSP-CSODL)method.The presented IWSP-CSODL model estimates the wind speed using a hybrid deep learning and hyperparameter optimizer.In the presented IWSP-CSODL model,the prediction process is performed via a convolutional neural network(CNN)based long short-term memory with autoencoder(CBLSTMAE)model.To optimally modify the hyperparameters related to the CBLSTMAE model,the chicken swarm optimization(CSO)algorithm is utilized and thereby reduces the mean square error(MSE).The experimental validation of the IWSP-CSODL model is tested using wind series data under three distinct scenarios.The comparative study pointed out the better outcomes of the IWSP-CSODL model over other recent wind speed prediction models. 展开更多
关键词 WEATHER wind speed predictive model chicken swarm optimization hybrid deep learning
下载PDF
Prediction of Wind Speed Using a Hybrid Regression-Optimization Approach
4
作者 Bhuvana Ramachandran Anbazhagan Swaminathan 《Journal of Power and Energy Engineering》 2023年第7期21-35,共15页
Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to pr... Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to predict wind speed, and a hybrid optimization approach is one of them. In this paper, the hybrid optimization approach combines a multiple linear regression approach with an optimization technique to achieve better results. In the context of wind speed prediction, this hybrid optimization approach can be used to improve the accuracy of existing prediction models. Here, a Grey Wolf Optimizer based Wind Speed Prediction (GWO-WSP) method is proposed. This approach is tested on the 2016, 2017, 2018, and 2019 Raw Data files from the Great Lakes Environmental Research Laboratories and the National Oceanic and Atmospheric Administration’s (GLERL-NOAA) Chicago Metadata Archive. The test results show that the implementation is successful and the approach yields accurate and feasible results. The computation time for execution of the algorithm is also superior compared to the existing methods in literature. 展开更多
关键词 wind speed prediction Multiple Linear Regression Grey Wolf Optimizer Accuracy of Results wind Power
下载PDF
Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China 被引量:1
5
作者 许沛华 成驰 +3 位作者 王文 陈正洪 钟水新 张艳霞 《Journal of Tropical Meteorology》 SCIE 2023年第4期473-481,共9页
This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win... This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1). 展开更多
关键词 CMA-GD wind speed prediction wind farm root mean square error performance evaluation
下载PDF
Short-term Wind Speed Prediction with a Two-layer Attention-based LSTM 被引量:3
6
作者 Jingcheng Qian Mingfang Zhu +1 位作者 Yingnan Zhao Xiangjian He 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期197-209,共13页
Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,... Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,their use to predict wind speed remains one of the most challenging and less studied areas.This paper investigates the problem of predicting wind speeds for multiple sites using temporal and spatial features and proposes a novel two-layer attentionbased long short-term memory(LSTM),termed 2Attn-LSTM,a unified framework of encoder and decoder mechanisms to handle temporal-spatial wind speed data.To eliminate the unevenness of the original wind speed,we initially decompose the preprocessing data into IMF components by variational mode decomposition(VMD).Then,it encodes the spatial features of IMF components at the bottom of the model and decodes the temporal features to obtain each component's predicted value on the second layer.Finally,we obtain the ultimate prediction value after denormalization and superposition.We have performed extensive experiments for short-term predictions on real-world data,demonstrating that 2Attn-LSTM outperforms the four baseline methods.It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-temporal features. 展开更多
关键词 wind speed prediction temporal-spatial features VMD LSTM attention mechanism
下载PDF
Functional-type Single-input-rule-modules Connected Neural Fuzzy System for Wind Speed Prediction 被引量:1
7
作者 Chengdong Li Li Wang +2 位作者 Guiqing Zhang Huidong Wang Fang Shang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期751-762,共12页
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a... Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy. 展开更多
关键词 Fuzzy inference system(FIS) Iearning algorithm neural fuzzy system single input rule module wind speed prediction
下载PDF
Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
8
作者 Yingnan Zhao Guanlan Ji +2 位作者 Fei Chen Peiyuan Ji Yi Cao 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期719-735,共17页
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw... Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms. 展开更多
关键词 Short-term wind speed prediction variational mode decomposition attention mechanism SENet BiLSTM
下载PDF
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction
9
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
10
作者 Zhongxian Men Eugene Yee +2 位作者 Fue-Sang Lien Hua Ji Yongqian Liu 《Energy and Power Engineering》 2014年第11期340-348,共9页
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m... The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China. 展开更多
关键词 Artificial Neural Network BOOTSTRAP RESAMPLING Numerical Weather prediction Super-Ensemble wind speed Power Forecasting
下载PDF
Improvement of Rainfall Prediction Model by Using Fuzzy Logic
11
作者 Md. Anisur Rahman 《American Journal of Climate Change》 2020年第4期391-399,共9页
This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a gi... This paper presents the improvement of the fuzzy inference model for predicting rainfall. Fuzzy rule based system is used in this study to predict rainfall. Fuzzy inference is the actual procedure of mapping with a given set of input and output through a set of fuzzy systems. Two operations were performed on the fuzzy logic model;the fuzzification operation and defuzzification operation. This study is obtaining two input variables and one output variable. The input variables are temperature and wind speed at a particular time and output variable is the amount of predictable rainfall. Temperature, wind speed and rainfall have to construct eight equations for different categories and which are shows the diagram of the graph. Fuzzy levels and membership functions obtained after minimum composition of inference part of the fuzzifications done for temperature and wind speed are considered as they represent the environmental condition enhance a rainfall occurrence which is effect on agricultural production. 展开更多
关键词 Fuzzy Logic Membership Function TEMPERATURE wind speed predicted Rainfall
下载PDF
基于混合分解和PCG-BiLSTM的风速短期预测 被引量:3
12
作者 毕贵红 黄泽 +3 位作者 赵四洪 谢旭 陈仕龙 骆钊 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期159-170,共12页
为降低风速的随机性对风力发电的影响,提高风速短期预测的精准度,提出一种基于混合分解、双通道输入、多分支PCG-BiLSTM深度学习模型的短期风速预测方法。首先,将全年风速数据分为春、夏、秋、冬4个季度,选取春季作为主要实验对象;其次... 为降低风速的随机性对风力发电的影响,提高风速短期预测的精准度,提出一种基于混合分解、双通道输入、多分支PCG-BiLSTM深度学习模型的短期风速预测方法。首先,将全年风速数据分为春、夏、秋、冬4个季度,选取春季作为主要实验对象;其次,利用奇异谱分解(SSD)和变分模态分解(VMD)以降低原始春季风速数据复杂度,生成具有不同模态且复杂度低的子分量,两种不同模式子分量组合为混合分量,实现不同模式分解算法的优势互补;最后,将混合分量以双通道的形式输入到多分支PCG-BiLSTM深度学习模型中,其模型的每个分支由卷积神经网络(CNN)与门控循环单元(GRU)并联组成时空特征提取模块,用于提取两种分解分量组合的混合分量的时空特征,各分支提取对应混合分量的时空特征经聚合后再由双向长短期记忆网络(BiLSTM)进一步提取风速信号的正向和反向双向波动规律,进而得到最终的风速预测结果。多组实验结果表明:提出的组合预测方法在短期风速预测中具有较高的精度和泛化能力,优于其他传统预测方法。 展开更多
关键词 风速 预测 深度学习 混合分解 并联网络
下载PDF
Improved deep mixed kernel randomized network for wind speed prediction
13
作者 Vijaya Krishna Rayi Ranjeeta Bisoi +1 位作者 S.P.Mishra P.K.Dash 《Clean Energy》 EI CSCD 2023年第5期1006-1031,共26页
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera... Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods. 展开更多
关键词 deep neural network mixed kernel random vector functional network auto-encoder chaotic sine-cosine Levy flight optimization single and multistep wind speed prediction
原文传递
基于PI-BBI的高铁沿线秒级风速质量控制算法研究
14
作者 张颖超 曹跃 +1 位作者 叶小岭 杨凡 《中国科技论文》 CAS 2024年第9期977-986,共10页
由于高铁超声波测风仪碍于安装环境限制易受外部干扰产生秒级异常风速,而现有的基本质量控制方法与气象领域分钟级时距质量控制算法无法准确识别秒级异常风速,导致监测风速不能很好地满足高铁秒级风速监测预警需求。为了解决该问题,基... 由于高铁超声波测风仪碍于安装环境限制易受外部干扰产生秒级异常风速,而现有的基本质量控制方法与气象领域分钟级时距质量控制算法无法准确识别秒级异常风速,导致监测风速不能很好地满足高铁秒级风速监测预警需求。为了解决该问题,基于高铁沿线风速监测异常值数据特征,提出一种基于PI-BBI的秒级风速监测数据质量控制算法。该方法首先利用基于物理信息的双向长短期记忆网络对风速异常值进行预测,并得到预测误差;接着通过改进的指数加权移动平均法对预测误差进行平滑;最后使用孤立森林检测平滑误差序列中的异常值,从而能够识别原始风速序列中的异常值。实验结果显示,该质量控制算法能有效改善高铁沿线风速监测数据的质量,从而提高监测预警的准确性。 展开更多
关键词 高速铁路 异常风速 质量控制 物理信息 预测误差
下载PDF
基于变分模态分解与鲸鱼算法优化回声状态网络的风速预测模型
15
作者 唐非 李昊 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1770-1777,共8页
风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态... 风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态分解算法将风速序列分解成多个分量以减少风速内部信号间的耦合性,降低建模难度。然后对这些分量分别建立对应的回声状态网络预测模型。针对回声状态网络模型性能受储备池参数影响较大的问题,采用鲸鱼优化算法对储备池参数进行优化。风速的最终预测值由分解后各分量预测值相加得到。最后,将实际采集的短期风速数据作为研究对象,通过与其他4种预测模型的对比分析表明提出的风速预测模型具有更高的预测精度,能够更好地对风速的变化趋势进行预测。 展开更多
关键词 风速 预测 变分模态分解 回声状态网络 鲸鱼优化算法
下载PDF
综掘工作面风流调控下风速及瓦斯粉尘浓度融合预测模型研究
16
作者 龚晓燕 邹浩 +6 位作者 刘壮壮 陈龙 付浩然 孙育恒 李昊 王新雨 牛虎明 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第10期136-146,共11页
针对综掘工作面传统的通风总量控制管理模式不能根据实际需求进行风流调控,造成瓦斯及粉尘聚集和污染隐患等问题,对风流调控下的风速及瓦斯粉尘浓度多源数据融合神经网络预测模型进行了研究。采用欧拉-拉格朗日法建立了风流调控下的瓦... 针对综掘工作面传统的通风总量控制管理模式不能根据实际需求进行风流调控,造成瓦斯及粉尘聚集和污染隐患等问题,对风流调控下的风速及瓦斯粉尘浓度多源数据融合神经网络预测模型进行了研究。采用欧拉-拉格朗日法建立了风流调控下的瓦斯及粉尘气固耦合模型并进行了测试验证,模拟分析瓦斯和粉尘颗粒在综掘巷道的分布情况,获取大量不同风流调控方案下的风速及瓦斯粉尘浓度样本数据。采用多层感知器神经网络技术建立预测模型结构,选取对瓦斯及粉尘浓度具有较大影响的风流调控等参数作为输入层,根据风速及瓦斯粉尘的隐患位置确定输出层,对样本数据进行预处理,通过引入差分进化算法搜索最佳隐藏层节点数和学习率,利用TensorFlow框架搭建多源数据融合神经网络预测模型。以陕北某矿综掘工作面为研究对象,对不同风流调控方案进行预测和井下实测验证。结果表明:该模型相对误差最大值为9.7%,具有较高的准确性;选取出风口距端头最短距离5 m和最远距离10 m这2种工况下的最佳调控方案,与调控前相比,风速符合规范要求,端头死角区瓦斯体积分数分别降低34%和35%,回风侧人行处平均粉尘质量浓度分别降低40%和41%,司机处粉尘质量浓度分别降低38%和36%,研究可为风流调控提供参考。 展开更多
关键词 综掘工作面 风流调控 风速 瓦斯及粉尘浓度 多源数据融合 神经网络预测 差分进化算法
下载PDF
基于改进时间卷积网络与藤Copula的短期风速预测
17
作者 黄宇 张宗拾 +2 位作者 刘家兴 李旭昕 张鹏 《电力科学与工程》 2024年第7期60-69,共10页
考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进... 考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进行初步风速预测;然后,考虑到众多气象因素对风速的影响,使用核主成分分析对气象数据进行降维,在保证数据特征的同时,降低数据的复杂度;最后,利用藤Copula在描述非线性相关结构方面的优势构建修正模型,使用降维的气象数据修正初步风速预测值,得到最终的风速预测结果。实验证明,所提方法提高了短期风速预测的精度。 展开更多
关键词 风速预测 改进时间卷积网络 气象因素 核主成分分析 藤Copula
下载PDF
基于ICEEMDAN-PSO-LSTM的短期风速预测
18
作者 于娜 武羿丞 +1 位作者 黄大为 孔令国 《东北电力大学学报》 2024年第4期86-93,共8页
提出一种改进自适应噪声完备集合经验模态分解与粒子群优化长短时记忆神经网络模型的短期风速预测方法。采用ICEEMDAN算法对日风速数据进行分解并计算相应边际谱,以谱相关性为依据对历史数据进行筛选;运用PSO算法优化LSTM神经网络参数,... 提出一种改进自适应噪声完备集合经验模态分解与粒子群优化长短时记忆神经网络模型的短期风速预测方法。采用ICEEMDAN算法对日风速数据进行分解并计算相应边际谱,以谱相关性为依据对历史数据进行筛选;运用PSO算法优化LSTM神经网络参数,对输入数据进行ICEEMDAN分解,将所获得的多个模态分量分别用PSO-LSTM进行预测,并通过将各分量预测值叠加的方法得到风速预测结果。使用所提方法对国内某风电场风速进行预测,通过比较分析验证所提方法的有效性。 展开更多
关键词 边际谱 长短时记忆网络 粒子群优化 风速预测
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
19
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
下载PDF
SSA-RBF神经网络模型在风电风速预测中的应用研究
20
作者 罗丹 章若冰 余娟 《绿色科技》 2024年第18期194-199,共6页
为了提高风电功率的预测精度和稳定性,以更好应对风速的多变性和非线性特性,提出了一种基于麻雀搜索算法(SSA)优化径向基函数(RBF)神经网络的风速预测模型(SSA-RBFN)。通过SSA优化RBFN的参数,以预测提高模型的精度和稳定性。通过选用风... 为了提高风电功率的预测精度和稳定性,以更好应对风速的多变性和非线性特性,提出了一种基于麻雀搜索算法(SSA)优化径向基函数(RBF)神经网络的风速预测模型(SSA-RBFN)。通过SSA优化RBFN的参数,以预测提高模型的精度和稳定性。通过选用风电场实际数据进行研究,与SSA-BP模型、RBF模型、BP模型进行比较。仿真结果表明:SSA-RBF预测模型在MAE、MBE和RMSE指标上体现出预测误差显著低于传统RBF模型和BP模型,表明提出的模型是可行和有效的。 展开更多
关键词 风速预测 麻雀搜索算法 径向基函数神经网络 预测模型优化
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部