We experimentally study the spin exchange collision in ultracold 40K Fermi gases. The quadratic Zeeman shift, trap potential and temperature of atomic cloud will influence on the spin changing dynamics. Dependences of...We experimentally study the spin exchange collision in ultracold 40K Fermi gases. The quadratic Zeeman shift, trap potential and temperature of atomic cloud will influence on the spin changing dynamics. Dependences of the spin components populations on the external bias magnetic field, the optical trap depth and the temperature of atomic cloud are experimentally investigated. The spin exchange from the initial states to the final state are observed for different initial states. This work shows an interesting process of reaching equilibrium by redistribution among the spin states with the spin exchange collision in an ultracold large-spin Fermi gas.展开更多
Moirésuperlattices,a twisted functional structure crossing the periodic and nonperiodic potentials,have recently attracted great interest in multidisciplinary fields,including optics and ultracold atoms,because o...Moirésuperlattices,a twisted functional structure crossing the periodic and nonperiodic potentials,have recently attracted great interest in multidisciplinary fields,including optics and ultracold atoms,because of their unique band structures,physical properties,and potential implications.Driven by recent experiments on quantum phenomena of bosonic gases,the atomic Bose–Einstein condensates in moiréoptical lattices,by which other quantum gases such as ultracold fermionic atoms are trapped,could be readily achieved in ultracold atom laboratories,whereas the associated nonlinear localization mechanism remains unexploited.Here,we report the nonlinear localization theory of ultracold atomic Fermi gases in two-dimensional moiréoptical lattices.The linear Bloch-wave spectrum of such a twisted structure exhibits rich nontrivial flat bands,which are separated by different finite bandgaps wherein the existence,properties,and dynamics of localized superfluid Fermi gas structures of two types,gap solitons and gap vortices(topological modes)with vortex charge S¼1,are studied numerically.Our results demonstrate the wide stability regions and robustness of these localized structures,opening up a new avenue for studying soliton physics and moiréphysics in ultracold atoms beyond bosonic gases.展开更多
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301600 and2016YFA0301602the National Natural Science Foundation of China under Grant Nos 11234008,11474188 and 11704234the Fund for Shanxi‘1331 Project’Key Subjects Construction
文摘We experimentally study the spin exchange collision in ultracold 40K Fermi gases. The quadratic Zeeman shift, trap potential and temperature of atomic cloud will influence on the spin changing dynamics. Dependences of the spin components populations on the external bias magnetic field, the optical trap depth and the temperature of atomic cloud are experimentally investigated. The spin exchange from the initial states to the final state are observed for different initial states. This work shows an interesting process of reaching equilibrium by redistribution among the spin states with the spin exchange collision in an ultracold large-spin Fermi gas.
基金supported by the National Natural Science Foundation of China(Grant No.12074423)the Young Scholar of Chinese Academy of Sciences in Western China(Grant No.XAB2021YN18)+2 种基金the Provincial Science Fund for Distinguished Young Scholars of Shaanxi(Grant No.2024JC-JCQN-11)the China Postdoctoral Science Foundation(Grant No.2023M733722)the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20232947).
文摘Moirésuperlattices,a twisted functional structure crossing the periodic and nonperiodic potentials,have recently attracted great interest in multidisciplinary fields,including optics and ultracold atoms,because of their unique band structures,physical properties,and potential implications.Driven by recent experiments on quantum phenomena of bosonic gases,the atomic Bose–Einstein condensates in moiréoptical lattices,by which other quantum gases such as ultracold fermionic atoms are trapped,could be readily achieved in ultracold atom laboratories,whereas the associated nonlinear localization mechanism remains unexploited.Here,we report the nonlinear localization theory of ultracold atomic Fermi gases in two-dimensional moiréoptical lattices.The linear Bloch-wave spectrum of such a twisted structure exhibits rich nontrivial flat bands,which are separated by different finite bandgaps wherein the existence,properties,and dynamics of localized superfluid Fermi gas structures of two types,gap solitons and gap vortices(topological modes)with vortex charge S¼1,are studied numerically.Our results demonstrate the wide stability regions and robustness of these localized structures,opening up a new avenue for studying soliton physics and moiréphysics in ultracold atoms beyond bosonic gases.