The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal reso...The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Novel physical properties emerge when the thickness of charge density wave(CDW)materials is reduced to the atomic level,owing to the significant modification of the electronic band structure and correlation effects.He...Novel physical properties emerge when the thickness of charge density wave(CDW)materials is reduced to the atomic level,owing to the significant modification of the electronic band structure and correlation effects.Here,we investigate the layer-dependent CDW phase transition and evolution of the nonequilibrium state of 1T-TaS_(2)nanoflakes using pump-probe spectroscopy.Both the low-energy single-particle and collective excitation relaxations exhibit sharp changes at〜210 K,indicating a phase transition from commensurate CDW to nearly commensurate CDW state.The single particle process reveals that the phase transition stiffness(PTS)is thickness-dependent.Moreover,a small PTS is observed in thin nanoflakes,which is attributed to the reduced thickness that increases the fluctuation and inhibits the nucleation and growth of discommensurations.In addition,the phase mode vanishes when the discommensuration network appears.Our results suggest that the carrier dynamics could be an efficient operational approach to measuring the quantum phase transition in correlated materials.展开更多
Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as t...Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as the center atoms for the center unit(denoted as MT-based small-molecule),respectively,have been applied as HTL,and two of them presented the efficiency over 20%in the planar inverted perovskite solar cells(PSCs),which demonstrated a significant improvement in comparison with the widely used HTL,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(known as PEDOT:PSS),in the planar inverted architecture.The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples.The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces.Moreover,the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS.Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances.These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.展开更多
Artificial van der Waals(vdWs)heterostructures offer unprecedented opportunities to explore and reveal novel synergistic electronic and optical phenomena,which are beneficial for the development of novel optoelectroni...Artificial van der Waals(vdWs)heterostructures offer unprecedented opportunities to explore and reveal novel synergistic electronic and optical phenomena,which are beneficial for the development of novel optoelectronic devices at atomic limits.However,due to the damage caused by the device fabrication process,their inherent properties such as carrier mobility are obscured,which hinders the improvement of device performance and the incorporation of vdWs materials into next-generation integrated circuits.Herein,combining pump-probe spectroscopic and scanning probe microscopic techniques,the intrinsic optoelectronic properties of PtSe_(2)/MoSe_(2)heterojunction were nondestructively and systematically investigated.The heterojunction exhibits a broad-spectrum optical response and maintains ultrafast carrier dynamics(interfacial charge transfer~0.8 ps and carrier lifetime~38.2 ps)simultaneously.The in-plane exciton diffusion coefficient of the heterojunction was extracted(19.4±7.6 cm^(2)∙s^(−1)),and its exciton mobility as high as 756.8 cm^(2)∙V−1∙s^(−1)was deduced,exceeding the value of its components.This enhancement was attributed to the formation of an n-type Schottky junction between PtSe_(2)and MoSe_(2),and its built-in electric field assisted the ultrafast transfer of photogenerated carriers from MoSe_(2)to PtSe_(2),enhancing the in-plane exciton diffusion of the heterojunction.Our results demonstrate that PtSe_(2)/MoSe_(2)is suitable for the development of broadspectrum and sensitive optoelectronic devices.Meanwhile,the results contribute to a fundamental understanding of the performance of various optoelectronic devices based on such PtSe_(2)two-dimensional(2D)heterostructures.展开更多
Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,in...Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,instead of a single exponential one.This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density.Here,a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves.The expressions of the TRPL curves and the transient absorption(TA)dynamic curves are theoretically derived,demonstrating that the TRPL curve is an infinite exponential series,regardless of the presence of surface recombination or not.Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA,thereby experimentally verifying our model.These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion.TRPL cannot provide a direct measurement of the carrier lifetime,whereas TA spectroscopy can.Furthermore,the surface and the bulk recombination can be resolved and the average diffusion coefficient(D)can also be correctly obtained by combining TRPL and TA measurements.We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films.Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells.展开更多
基金supported by the National Key R&D Program (No.2018YFA0208700 and No.2016YFA0200602)the National Natural Science Foundation of China (No.21688102 and No.21403222)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017224)
文摘The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金We thank Prof.Yong Wang(Nankai University)for the valued discussions.We acknowledge financial support from the National Key Research and Development Program of China(Nos.2017YFA0205000,2017YFA0303600,2016YFA0200701)the National Natural Science Foundation of China(Nos.21425310,21790353,21721002,21822502,21673058)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB36000000,XDB30000000)the Key Research Program of Frontier Sciences of CAS(No.QYZDB-SSW-SYS031).
文摘Novel physical properties emerge when the thickness of charge density wave(CDW)materials is reduced to the atomic level,owing to the significant modification of the electronic band structure and correlation effects.Here,we investigate the layer-dependent CDW phase transition and evolution of the nonequilibrium state of 1T-TaS_(2)nanoflakes using pump-probe spectroscopy.Both the low-energy single-particle and collective excitation relaxations exhibit sharp changes at〜210 K,indicating a phase transition from commensurate CDW to nearly commensurate CDW state.The single particle process reveals that the phase transition stiffness(PTS)is thickness-dependent.Moreover,a small PTS is observed in thin nanoflakes,which is attributed to the reduced thickness that increases the fluctuation and inhibits the nucleation and growth of discommensurations.In addition,the phase mode vanishes when the discommensuration network appears.Our results suggest that the carrier dynamics could be an efficient operational approach to measuring the quantum phase transition in correlated materials.
基金supported by the National Key Research and Development Program of China(2017YFB037001)the National Natural Science Foundation of China(91648109、51603021、51602031、51673139)+2 种基金Jiangsu Provincial“333”High-level Talent Training Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Applied Basic Research Program of Changzhou(CJ20190050)。
文摘Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as the center atoms for the center unit(denoted as MT-based small-molecule),respectively,have been applied as HTL,and two of them presented the efficiency over 20%in the planar inverted perovskite solar cells(PSCs),which demonstrated a significant improvement in comparison with the widely used HTL,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(known as PEDOT:PSS),in the planar inverted architecture.The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples.The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces.Moreover,the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS.Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances.These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.
基金supported by the National Natural Science Foundation of China(Nos.11974088,61975007,52172060,61925401,92064004,61927901,and 92164302)the Beijing Natural Science Foundation(Nos.Z190006 and 4222073)+1 种基金the National Key R&D Program of China(No.2018YFA0208402),the 111 Project(No.B18001)the Fok Ying-Tong Education Foundation,and the Tencent Foundation through the XPLORER PRIZE。
文摘Artificial van der Waals(vdWs)heterostructures offer unprecedented opportunities to explore and reveal novel synergistic electronic and optical phenomena,which are beneficial for the development of novel optoelectronic devices at atomic limits.However,due to the damage caused by the device fabrication process,their inherent properties such as carrier mobility are obscured,which hinders the improvement of device performance and the incorporation of vdWs materials into next-generation integrated circuits.Herein,combining pump-probe spectroscopic and scanning probe microscopic techniques,the intrinsic optoelectronic properties of PtSe_(2)/MoSe_(2)heterojunction were nondestructively and systematically investigated.The heterojunction exhibits a broad-spectrum optical response and maintains ultrafast carrier dynamics(interfacial charge transfer~0.8 ps and carrier lifetime~38.2 ps)simultaneously.The in-plane exciton diffusion coefficient of the heterojunction was extracted(19.4±7.6 cm^(2)∙s^(−1)),and its exciton mobility as high as 756.8 cm^(2)∙V−1∙s^(−1)was deduced,exceeding the value of its components.This enhancement was attributed to the formation of an n-type Schottky junction between PtSe_(2)and MoSe_(2),and its built-in electric field assisted the ultrafast transfer of photogenerated carriers from MoSe_(2)to PtSe_(2),enhancing the in-plane exciton diffusion of the heterojunction.Our results demonstrate that PtSe_(2)/MoSe_(2)is suitable for the development of broadspectrum and sensitive optoelectronic devices.Meanwhile,the results contribute to a fundamental understanding of the performance of various optoelectronic devices based on such PtSe_(2)two-dimensional(2D)heterostructures.
基金supported by the National Natural Science Foundation of China(Grant No.11888101)National Key Research and Development Program of China(Grant No.2022YFA1403901)+1 种基金Sichuan Science and Technology Program(Grant Nos.2021JDTD0021,and 2022ZYD0015)Innovation Funds from China Academy of Engineering Physics(Grant No.CX20210037)。
文摘Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,instead of a single exponential one.This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density.Here,a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves.The expressions of the TRPL curves and the transient absorption(TA)dynamic curves are theoretically derived,demonstrating that the TRPL curve is an infinite exponential series,regardless of the presence of surface recombination or not.Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA,thereby experimentally verifying our model.These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion.TRPL cannot provide a direct measurement of the carrier lifetime,whereas TA spectroscopy can.Furthermore,the surface and the bulk recombination can be resolved and the average diffusion coefficient(D)can also be correctly obtained by combining TRPL and TA measurements.We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films.Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells.