We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
Aluminum ablation by multiple femtosecond laser pulses is investigated via time-resolved shadowgraphs and scanning electron microscope (SEM) images of the ablation spot. The spatial distribution of the ejected mater...Aluminum ablation by multiple femtosecond laser pulses is investigated via time-resolved shadowgraphs and scanning electron microscope (SEM) images of the ablation spot. The spatial distribution of the ejected material and the radius of the shock wave generated during the ablation are found to vary with the increase in the number of pulses. In the initial two pulses, nearly concentric and semicircular stripes within the shock wave front are observed, unlike in subsequent pulses. Ablation by multiple femtosecond pulses exhibits different characteristics compared with the case induced by single femtosecond pulse because of the changes to the aluminum target surface induced by the preceding pulses.展开更多
Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+)...Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.展开更多
Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interracial molecules function. It requires to develop surface-sensitive, fast-identi...Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interracial molecules function. It requires to develop surface-sensitive, fast-identification, and time-resolved techniques. In this study, we employ several key technical procedures and successfully develop a highly sensitive femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) system. This system is able to measure the spectra with two polarization combinations (ssp and ppp, or psp and ssp) simultaneously. It takes less than several seconds to collect one spectrum. To the best of our knowledge, it is the fastest speed of collecting SFG spectra reported by now. Using the time-resolved measurement, ultrafast vibrational dynamics of the N-H mode of α-helical peptide at water interface is determined. It is found that the membrane environment does not affect the N-H vibrational relaxation dynamics. It is expected that the time-resolved SFG system will play a vital role in the deep understanding of the dynamics and interaction of the complex molecules at surface and interface. Our method may also provide an important technical proposal for the people who plan to develop time-resolved SFG systems with simultaneous measurement of multiple polarization combinations.展开更多
Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obta...Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of cheinical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.展开更多
Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techn...Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.展开更多
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low e...A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.展开更多
Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,in...Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,instead of a single exponential one.This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density.Here,a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves.The expressions of the TRPL curves and the transient absorption(TA)dynamic curves are theoretically derived,demonstrating that the TRPL curve is an infinite exponential series,regardless of the presence of surface recombination or not.Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA,thereby experimentally verifying our model.These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion.TRPL cannot provide a direct measurement of the carrier lifetime,whereas TA spectroscopy can.Furthermore,the surface and the bulk recombination can be resolved and the average diffusion coefficient(D)can also be correctly obtained by combining TRPL and TA measurements.We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films.Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells.展开更多
Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast pr...Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.展开更多
Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ...Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ultrafast spectroscopy enables a deeper understanding of the structure–function interplay and various interactions involved in the nanosystems.This mini-review presents an overview of the recent advances achieved in our ultrafast spectroscopy laboratory that address the ultrafast dynamics and related mechanisms in several representative nanomaterial complex systems by means of femtosecond time-resolved transient absorption spectroscopy. We attempt to convey instructive, consistent information regarding the important processes, pathways, dynamics, and interactions involved in the nanomaterial complex systems,most of which exhibit excellent performance in photocatalysis.展开更多
Nanophotonic platforms such as metasurfaces,achieving arbitrary phase profiles within ultrathin thickness,emerge as miniaturized,ultracompact and kaleidoscopic optical vortex generators.However,it is often required to...Nanophotonic platforms such as metasurfaces,achieving arbitrary phase profiles within ultrathin thickness,emerge as miniaturized,ultracompact and kaleidoscopic optical vortex generators.However,it is often required to segment or interleave independent sub-array metasurfaces to multiplex optical vortices in a single nano-device,which in turn affects the device’s compactness and channel capacity.Here,inspired by phyllotaxis patterns in pine cones and sunflowers,we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve,both in free space and on a chip,where one meta-atom may contribute to many vortices simultaneously.The time-resolved dynamics of on-chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy.Our nature-inspired optical vortex generator would facilitate various vortex-related optical applications,including structured wavefront shaping,free-space and plasmonic vortices,and high-capacity information metaphotonics.展开更多
The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optic...The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金Project supported by the Science and Technology Development Fund Planning Project for the Universities of Tianjin,China(Grant No.20140902)the Natural Science Foundation of Tianjin City,China(Grant No.16JCQNJC01900)+1 种基金the National Natural Science Foundation of China(Grant Nos.51376136and 61474082)the Science and Technology Achievement Award Project for the Universities of Tianjin,China
文摘Aluminum ablation by multiple femtosecond laser pulses is investigated via time-resolved shadowgraphs and scanning electron microscope (SEM) images of the ablation spot. The spatial distribution of the ejected material and the radius of the shock wave generated during the ablation are found to vary with the increase in the number of pulses. In the initial two pulses, nearly concentric and semicircular stripes within the shock wave front are observed, unlike in subsequent pulses. Ablation by multiple femtosecond pulses exhibits different characteristics compared with the case induced by single femtosecond pulse because of the changes to the aluminum target surface induced by the preceding pulses.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304157,21303255 and 11475229the‘Six Talent Peaks’Project in Jiangsu Province under Grant No 2015-JNHB-011the College Students Practice Innovative Training Program of Nuist under Grant No 201610300042
文摘Ultrafast dissociation dynamics of chloroiodomethane (CH2ICl) in the B band is studied by femtosecond time- resolved time-of-flight (TOF) mass spectrometry. Time-resolved TOF mass signal of parent ion (CH2ICl+) and main daughter ion (CH2Cl+) are obtained. The curve for the transient signal of CH2ICl+ is simple and can be well fitted by an exponential decay convoluted with a Gaussian function. The decay constant determined to be less than 35 fs reflects the lifetime of the B band. Significant substituent effects on photodissociation dynamics of CH2IC1 compared with CH3I are discussed. The dissociation time from the parent ion CH2IC1+ to the daughter ion CH2Cl+ is determined in the experiment. The optimized geometry of the ionic state of CH2ICl and the ionization energy are calculated for further analysis of the measurements. In addition, compared with the parent ion, a new decay component with time constant of -596 fs is observed for CH2Cl+, and reasonable mechanisms are proposed for the explanation.
文摘Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interracial molecules function. It requires to develop surface-sensitive, fast-identification, and time-resolved techniques. In this study, we employ several key technical procedures and successfully develop a highly sensitive femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) system. This system is able to measure the spectra with two polarization combinations (ssp and ppp, or psp and ssp) simultaneously. It takes less than several seconds to collect one spectrum. To the best of our knowledge, it is the fastest speed of collecting SFG spectra reported by now. Using the time-resolved measurement, ultrafast vibrational dynamics of the N-H mode of α-helical peptide at water interface is determined. It is found that the membrane environment does not affect the N-H vibrational relaxation dynamics. It is expected that the time-resolved SFG system will play a vital role in the deep understanding of the dynamics and interaction of the complex molecules at surface and interface. Our method may also provide an important technical proposal for the people who plan to develop time-resolved SFG systems with simultaneous measurement of multiple polarization combinations.
文摘Polarization dependent time-resolved infrared (TRIR) spectroscopy has proven to be a useful technique to study the structural dynamics in a photochemical process. The angular information of transient species is obtainable in this measurement, which makes it a valuable technique for the investigation of electron distribution, molecular structure, and conformational dynamics. In this review, we briefly introduce the principles and applications of polarization dependent TRIR spectroscopy. We mainly focused on the following topics: (i) an overview of TRIR spectroscopy, (ii) principles of TRIR spectroscopy and its advantages compared to the other ultrafast techniques, (iii) examples that use polarization dependent TRIR spectroscopy to probe a variety of cheinical and dynamical phenomena including protein conformational dynamics, excited state electron localization, and photoisomerization, (iv) the limitations and prospects of TRIR spectroscopy.
基金funded by the National Natural Science Foundation of China(No.92156024and No.92356307 to Jinquan Chen)Menghui Jia thanks the Materials Characterization Center and the Office of Laboratory and Equipment of East China Normal University for funding support(ECNUETR2023-13).
文摘Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.
文摘A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.
基金supported by the National Natural Science Foundation of China(Grant No.11888101)National Key Research and Development Program of China(Grant No.2022YFA1403901)+1 种基金Sichuan Science and Technology Program(Grant Nos.2021JDTD0021,and 2022ZYD0015)Innovation Funds from China Academy of Engineering Physics(Grant No.CX20210037)。
文摘Time-resolved photoluminescence(TRPL)has been extensively used to measure the carrier lifetime in lead halide perovskites.The TRPL curves of perovskite materials are usually fitted with a multi-exponential function,instead of a single exponential one.This was considered to be a result of the surface and the bulk recombination or the additional radiative recombination caused by the high excited carrier density.Here,a new model considering the diffusion and the trap-assisted recombination of carriers is proposed to explain the TRPL curves.The expressions of the TRPL curves and the transient absorption(TA)dynamic curves are theoretically derived,demonstrating that the TRPL curve is an infinite exponential series,regardless of the presence of surface recombination or not.Our newly developed highly sensitive nanosecond TA and TRPL were employed to measure the carrier dynamics of the same sample under low illumination in the linear response region of TA,thereby experimentally verifying our model.These results suggest that the decay of the TRPL is not only a consequence of the carrier recombination but also the carrier diffusion.TRPL cannot provide a direct measurement of the carrier lifetime,whereas TA spectroscopy can.Furthermore,the surface and the bulk recombination can be resolved and the average diffusion coefficient(D)can also be correctly obtained by combining TRPL and TA measurements.We also propose an approximate method for calculating the carrier lifetime and diffusion coefficient of high-quality perovskite films.Our model provides not only a new interpretation of the dynamics of the PL decay but also a deep insight into the carrier dynamics in the nanosecond time scale under working condition of perovskites solar cells.
文摘Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.
基金support from the National Natural Science Foundation of China (21573211 and 21421063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB01020200)the Fundamental Research Funds for the Central Universities of China (WK2340000063)
文摘Over the past decade the integration of ultrafast spectroscopy with nanoscience has greatly propelled the development of nanoscience, as the key information gleaned from the mechanistic studies with the assistance of ultrafast spectroscopy enables a deeper understanding of the structure–function interplay and various interactions involved in the nanosystems.This mini-review presents an overview of the recent advances achieved in our ultrafast spectroscopy laboratory that address the ultrafast dynamics and related mechanisms in several representative nanomaterial complex systems by means of femtosecond time-resolved transient absorption spectroscopy. We attempt to convey instructive, consistent information regarding the important processes, pathways, dynamics, and interactions involved in the nanomaterial complex systems,most of which exhibit excellent performance in photocatalysis.
基金supported by the National Research Foundation,Prime Minister’s Office,Singapore under Competitive Research Program Award NRF-CRP22-2019-0006the grant(R-261-518-004-720)from Advanced Research and Technology Innovation Centre(ARTIC)+4 种基金the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 278162697-SFB 1242ERC Advanced Grant Complex Plan,BMBF,DFG and BW-Stiftungthe Research Grants Council of Hong Kong(CRF Grant No.C6013-18G)the City University of Hong Kong(Project No.9610434)the support from A*STAR under its AME YIRG Grant(Award No.A2084c0172).
文摘Nanophotonic platforms such as metasurfaces,achieving arbitrary phase profiles within ultrathin thickness,emerge as miniaturized,ultracompact and kaleidoscopic optical vortex generators.However,it is often required to segment or interleave independent sub-array metasurfaces to multiplex optical vortices in a single nano-device,which in turn affects the device’s compactness and channel capacity.Here,inspired by phyllotaxis patterns in pine cones and sunflowers,we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve,both in free space and on a chip,where one meta-atom may contribute to many vortices simultaneously.The time-resolved dynamics of on-chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy.Our nature-inspired optical vortex generator would facilitate various vortex-related optical applications,including structured wavefront shaping,free-space and plasmonic vortices,and high-capacity information metaphotonics.
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB921001,and 2013CB328706)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(GrantNo.QYZDJ-SSW-SLH020)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.11574365,11474349,11674385,11404380,91436101,and 61275060)
文摘The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.