Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples wer...Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.展开更多
The present work was undertaken to improve superplastic ductility of friction-stir welded joints of ultrafine-grained(UFG)Al-Mg-Sc-Zr alloy.In order to suppress the undesirable abnormal grain growth,which typically oc...The present work was undertaken to improve superplastic ductility of friction-stir welded joints of ultrafine-grained(UFG)Al-Mg-Sc-Zr alloy.In order to suppress the undesirable abnormal grain growth,which typically occurs in the heavily deformed base material,the UFG material was produced at elevated temperature.It was suggested that the new processing route could reduce dislocation density in the UFG structure and thus enhance its thermal stability.It was found,however,that the new approach resulted in a relatively high fraction of low-angle boundaries which,in turn,retarded grain-boundary sliding during subsequent superplastic tests.Therefore,despite the successful inhibition of the abnormal grain growth in the base-material zone,the superplastic deformation was still preferentially concentrated in the fully-recrystallized stir zone of the material.As a result,the maximal elongation-to-failure did not exceed 700%.展开更多
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,...Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.展开更多
Advanced materials with superior comprehensive mechanical properties are strongly desired,but it has long been a challenge to achieve high ductility in high-strength materials.Here,we proposed a new V 0.5 Cr 0.5 CoNi ...Advanced materials with superior comprehensive mechanical properties are strongly desired,but it has long been a challenge to achieve high ductility in high-strength materials.Here,we proposed a new V 0.5 Cr 0.5 CoNi medium-entropy alloy(MEA)with a face-centered cubic/hexagonal close-packed(FCC/HCP)dual-phase ultrafine-grained(UFG)architecture containing stacking faults(SFs)and local chemical order(LCO)in HCP solid solution,to obtain an ultrahigh yield strength of 1476 MPa and uniform elongation of 13.2%at ambient temperature.The ultrahigh yield strength originates mainly from fine grain strength-ening of the UFG FCC matrix and HCP second-phase strengthening assisted by the SFs and LCO inside,whereas the large ductility correlates to the superior ability of the UFG FCC matrix to storage disloca-tions and the function of deformation-induced SFs in the vicinity of the FCC/HCP boundary to eliminate the stress concentration.This work provides new guidance by engineering novel composition and stable UFG structure for upgrading the mechanical properties of metallic materials.展开更多
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G...An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.展开更多
Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeform...Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.展开更多
Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coar...Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coarse-grained(CG) counterpart were investigated under fully reversed cyclic deformation.The fatigue strength of the UFG HEA can be significantly enhanced by refining the grain size. However,no grain coarsening was observed in the UFG HEA during fatigue tests. Mechanisms for the superior mechanical properties of the UFG HEA were explored.展开更多
Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation...Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation and dehydrogenation of this group of materials.Severe plastic deformation(SPD)methods,such as equal-channel angular pressing(ECAP),high-pressure torsion(HPT),intensive rolling,and fast forging,have been widely used to enhance the activation,air resistance,and hydrogenation/dehydrogenation kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects.These severely deformed materials,particularly in the presence of alloying additives or second-phase nanoparticles,can show not only fast hydrogen absorption/desorption kinetics but also good cycling stability.It was shown that some materials that are apparently inert to hydrogen can absorb hydrogen after SPD processing.Moreover,the SPD methods were effectively used for hydrogen binding-energy engineering and synthesizing new magnesium alloys with low thermodynamic stability for reversible low/room-temperature hydrogen storage,such as nanoglasses,high-entropy alloys,and metastable phases including the high-pressureγ-MgH2 polymorph.This work reviews recent advances in the development of Mg-based hydrogen storage materials by SPD processing and discusses their potential in future applications.展开更多
Tungsten-rhenium(W-Re)alloys with high-Re contents are the preferred refractory metal materials in many applications because of the improved ductility and processability over pure W and low-Re tung-sten alloys.However...Tungsten-rhenium(W-Re)alloys with high-Re contents are the preferred refractory metal materials in many applications because of the improved ductility and processability over pure W and low-Re tung-sten alloys.However,the sintering concurrently becomes increasingly more difficult with increasing Re contents.Here we proposed that the sintering conundrum is caused by the lowered crystal symmetry and the wider dihedral angle distribution when body-center-cubic(BCC)W is alloyed with more hexagonal-close-packed(HCP)Re,which results in inefficient pore removal in the final stage sintering.We showed that the conundrum can be resolved by pressureless two-step sintering(TSS)which suppresses acceler-ating final-stage grain growth,and our proposal is supported by the data of the critical densityρc that is required to start the second step for successful TSS at different W-Re compositions.Dense ultrafine-grained W-Re alloys with∼300 nm average grain size and up to 25 wt%Re were successfully produced.Our work demonstrates the unique opportunities offered by two-step sintering to advance the scientific understanding and technological practices in powder metallurgy and related fields.展开更多
High-entropy alloys and ceramics containing at least five principal elements have recently received high attention for various mechanical and functional applications.The application of severe plastic deformation(SPD),...High-entropy alloys and ceramics containing at least five principal elements have recently received high attention for various mechanical and functional applications.The application of severe plastic deformation(SPD),particularly the high-pressure torsion method,combined with the CALPHAD(calculation of phase diagram) and first-principles calculations resulted in the development of numerous superfunctional high-entropy materials with superior properties compared to the normal functions of engineering materials.This article reviews the recent advances in the application of SPD to developing superfunctional high-entropy materials.These superfunctional properties include(ⅰ) ultrahigh hardness levels comparable to the hardness of ceramics in high-entropy alloys,(ⅱ) high yield strength and good hydrogen embrittlement resistance in high-entropy alloys;(ⅲ) high strength,low elastic modulus,and high biocompatibility in high-entropy alloys,(ⅳ) fast and reversible hydrogen storage in high-entropy hydrides,(ⅴ) photovoltaic performance and photocurrent generation on high-entropy semiconductors,(ⅵ) photocatalytic oxygen and hydrogen production from water splitting on high-entropy oxides and oxynitrides,and(ⅶ)CO_(2) photoreduction on high-entropy ceramics.These findings introduce SPD as not only a processing tool to improve the properties of existing high-entropy materials but also as a synthesis tool to produce novel high-entropy materials with superior properties compared with conventional engineering materials.展开更多
Producing ultrafine-grained(UFG)microstructures with enhanced thermal stability is an important yet challenging route to further improve mechanical properties of structural materials.Here,a high-performance bulk UFG c...Producing ultrafine-grained(UFG)microstructures with enhanced thermal stability is an important yet challenging route to further improve mechanical properties of structural materials.Here,a high-performance bulk UFG copper that can stabilize even at temperatures up to 750℃(∼0.75 T m,T m is the melting point)was fabricated by manipulating its recrystallization behavior via low alloying of Co.Addition of 1 wt.%–1.5 wt.%of Co can trigger quick and copious intragranular clustering of Co atoms,which offers high Zener pinning pressure and pins the grain boundaries(GBs)of freshly recrystallized ul-trafine grains.Due to the fact that the subsequent growth of the coherent Co-enriched nanoclusters was slow,sufficient particles adjacent to GBs remained to inhibit the migration of GBs,giving rise to the UFG microstructure with prominently high thermal stability.This work manifests that the strategy for pro-ducing UFGs with coherent precipitates can be applied in many alloy systems such as Fe-and Cu-based,which paves the pathway for designing advanced strain-hardenable UFGs with plain compositions.展开更多
基金financial supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natural Science Foundation of China (No. 51674303)+2 种基金the Huxiang High-level Talent Gathering Project of Hunan Province, China (No. 2018RS3015)the Innovation Driven Program of Central South University, China (No. 2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University, China。
文摘Ultrafine-grained(UFG)AA1060 sheets were fabricated via five-cycle accumulative roll bonding(ARB)and subsequent three-pass cold rolling(298 K),or cryorolling(83 K and 173 K).Microstructures of the aluminum samples were examined via transmission electron microscopy,and their mechanical properties were measured via tensile and microhardness testing.Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling,and the grain size became finer with reducing rolling temperature.The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm,respectively,via subsequent cold rolling or cryorolling(83 K).Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.
基金financially supported by the Russian Science Foundation(No.18-79-10174)。
文摘The present work was undertaken to improve superplastic ductility of friction-stir welded joints of ultrafine-grained(UFG)Al-Mg-Sc-Zr alloy.In order to suppress the undesirable abnormal grain growth,which typically occurs in the heavily deformed base material,the UFG material was produced at elevated temperature.It was suggested that the new processing route could reduce dislocation density in the UFG structure and thus enhance its thermal stability.It was found,however,that the new approach resulted in a relatively high fraction of low-angle boundaries which,in turn,retarded grain-boundary sliding during subsequent superplastic tests.Therefore,despite the successful inhibition of the abnormal grain growth in the base-material zone,the superplastic deformation was still preferentially concentrated in the fully-recrystallized stir zone of the material.As a result,the maximal elongation-to-failure did not exceed 700%.
基金Projects(11272267,11102168,10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by Northwestern Polytechnical University
文摘Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates.
基金supported by the National Natural Science Foundation of China(Nos.U1530401,52071038,51871194)the Fundamental Research Funds for the Central Universities(No.N2102008)the Innovation Research Group Project of Hebei Natural Science Foundation,China(No.E2021203011).
文摘Advanced materials with superior comprehensive mechanical properties are strongly desired,but it has long been a challenge to achieve high ductility in high-strength materials.Here,we proposed a new V 0.5 Cr 0.5 CoNi medium-entropy alloy(MEA)with a face-centered cubic/hexagonal close-packed(FCC/HCP)dual-phase ultrafine-grained(UFG)architecture containing stacking faults(SFs)and local chemical order(LCO)in HCP solid solution,to obtain an ultrahigh yield strength of 1476 MPa and uniform elongation of 13.2%at ambient temperature.The ultrahigh yield strength originates mainly from fine grain strength-ening of the UFG FCC matrix and HCP second-phase strengthening assisted by the SFs and LCO inside,whereas the large ductility correlates to the superior ability of the UFG FCC matrix to storage disloca-tions and the function of deformation-induced SFs in the vicinity of the FCC/HCP boundary to eliminate the stress concentration.This work provides new guidance by engineering novel composition and stable UFG structure for upgrading the mechanical properties of metallic materials.
基金financial supports from the National Natural Science Foundation of China(Nos.51161003,51561031)the Natural Science Foundation of Guangxi,China(No.2018GXNSFAA138150)。
文摘An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.
基金This work was financially supported by the National Natural Science Foundation of China (No.A50071034)
文摘Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.
基金supported by the National Natural Science Foundation of China (Nos. 51501198 and 51331007)
文摘Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coarse-grained(CG) counterpart were investigated under fully reversed cyclic deformation.The fatigue strength of the UFG HEA can be significantly enhanced by refining the grain size. However,no grain coarsening was observed in the UFG HEA during fatigue tests. Mechanisms for the superior mechanical properties of the UFG HEA were explored.
基金supported in part by the Light Metals Educational Foundation of Japan,and in part by the MEXT,Japan through Grants-in-Aid for Scientific Research on Innovative Areas(Nos.JP19H05176&JP21H00150)the Challenging Research Exploratory(Grant No.JP22K18737)+6 种基金W.J.Botta is grateful to the Brazilian agencies FAPESP(Grant No.2013/05987-8)CNPq(Grant Nos.421181-2018-4 and 307397-2019-0)the financial support and to the Laboratory of Structural Characterization(LCE-DEMa-UFSCar)for general electron microscopy facilities.R.Floriano thanks for the financial support from FAPESP(Grant No.2022/01351-0)support from the French State through the ANR-21-CE08-0034-01 project as well as the program“Investment in the future”operated by the National Research Agency(ANR)referenced under No.ANR-11-LABX-0008-01(Labex DAMAS)support from the National Natural Science Foundation of China(Grant No.52171205)support from the National Natural Science Foundation of China(Grant No.52071157).
文摘Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation and dehydrogenation of this group of materials.Severe plastic deformation(SPD)methods,such as equal-channel angular pressing(ECAP),high-pressure torsion(HPT),intensive rolling,and fast forging,have been widely used to enhance the activation,air resistance,and hydrogenation/dehydrogenation kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects.These severely deformed materials,particularly in the presence of alloying additives or second-phase nanoparticles,can show not only fast hydrogen absorption/desorption kinetics but also good cycling stability.It was shown that some materials that are apparently inert to hydrogen can absorb hydrogen after SPD processing.Moreover,the SPD methods were effectively used for hydrogen binding-energy engineering and synthesizing new magnesium alloys with low thermodynamic stability for reversible low/room-temperature hydrogen storage,such as nanoglasses,high-entropy alloys,and metastable phases including the high-pressureγ-MgH2 polymorph.This work reviews recent advances in the development of Mg-based hydrogen storage materials by SPD processing and discusses their potential in future applications.
基金This work is financially supported by National Key R&D Pro-gram of China(no.2022YFB3700075)Natural Science Foundation of China(nos.52074032,51974029,52071013,52130407)+3 种基金Beijing Natural Science Foundation(no.2232084)Guangdong Basic and Applied Basic Research Foundation(no.2021B1515120033)Basic and Applied Basic Research Fund of Guangdong Province(no.BK20BE015)111 Project(no.B170003).
文摘Tungsten-rhenium(W-Re)alloys with high-Re contents are the preferred refractory metal materials in many applications because of the improved ductility and processability over pure W and low-Re tung-sten alloys.However,the sintering concurrently becomes increasingly more difficult with increasing Re contents.Here we proposed that the sintering conundrum is caused by the lowered crystal symmetry and the wider dihedral angle distribution when body-center-cubic(BCC)W is alloyed with more hexagonal-close-packed(HCP)Re,which results in inefficient pore removal in the final stage sintering.We showed that the conundrum can be resolved by pressureless two-step sintering(TSS)which suppresses acceler-ating final-stage grain growth,and our proposal is supported by the data of the critical densityρc that is required to start the second step for successful TSS at different W-Re compositions.Dense ultrafine-grained W-Re alloys with∼300 nm average grain size and up to 25 wt%Re were successfully produced.Our work demonstrates the unique opportunities offered by two-step sintering to advance the scientific understanding and technological practices in powder metallurgy and related fields.
基金the Hosokawa Powder Technology Foundation of Japan for a grantsupported by the MEXT, Japan through Grants-in-Aid for Scientific Research on Innovative Areas (Nos. JP19H05176 and JP21H00150)in part by the MEXT, Japan through Grant-in-Aid for Challenging Research Exploratory (No. JP22K18737)。
文摘High-entropy alloys and ceramics containing at least five principal elements have recently received high attention for various mechanical and functional applications.The application of severe plastic deformation(SPD),particularly the high-pressure torsion method,combined with the CALPHAD(calculation of phase diagram) and first-principles calculations resulted in the development of numerous superfunctional high-entropy materials with superior properties compared to the normal functions of engineering materials.This article reviews the recent advances in the application of SPD to developing superfunctional high-entropy materials.These superfunctional properties include(ⅰ) ultrahigh hardness levels comparable to the hardness of ceramics in high-entropy alloys,(ⅱ) high yield strength and good hydrogen embrittlement resistance in high-entropy alloys;(ⅲ) high strength,low elastic modulus,and high biocompatibility in high-entropy alloys,(ⅳ) fast and reversible hydrogen storage in high-entropy hydrides,(ⅴ) photovoltaic performance and photocurrent generation on high-entropy semiconductors,(ⅵ) photocatalytic oxygen and hydrogen production from water splitting on high-entropy oxides and oxynitrides,and(ⅶ)CO_(2) photoreduction on high-entropy ceramics.These findings introduce SPD as not only a processing tool to improve the properties of existing high-entropy materials but also as a synthesis tool to produce novel high-entropy materials with superior properties compared with conventional engineering materials.
基金supported by the National Natural Science Foundation of China(Nos.52101120,52322102 and 51971018)the National Key Research and Development Program of China(No.2022YFB3705201).
文摘Producing ultrafine-grained(UFG)microstructures with enhanced thermal stability is an important yet challenging route to further improve mechanical properties of structural materials.Here,a high-performance bulk UFG copper that can stabilize even at temperatures up to 750℃(∼0.75 T m,T m is the melting point)was fabricated by manipulating its recrystallization behavior via low alloying of Co.Addition of 1 wt.%–1.5 wt.%of Co can trigger quick and copious intragranular clustering of Co atoms,which offers high Zener pinning pressure and pins the grain boundaries(GBs)of freshly recrystallized ul-trafine grains.Due to the fact that the subsequent growth of the coherent Co-enriched nanoclusters was slow,sufficient particles adjacent to GBs remained to inhibit the migration of GBs,giving rise to the UFG microstructure with prominently high thermal stability.This work manifests that the strategy for pro-ducing UFGs with coherent precipitates can be applied in many alloy systems such as Fe-and Cu-based,which paves the pathway for designing advanced strain-hardenable UFGs with plain compositions.