The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ...The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.展开更多
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O...The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.展开更多
The effects of high-volume slag-fly ash cement with different particle sizes on hydration degree,microstructure and mechanical properties were systematically studied,by means of laser particle size(DLS),X-ray diffract...The effects of high-volume slag-fly ash cement with different particle sizes on hydration degree,microstructure and mechanical properties were systematically studied,by means of laser particle size(DLS),X-ray diffraction (XRD),comprehensive thermal analysis (TG-DTA),scanning electron microscopy(SEM) and mechanical properties tests.The results show that suitable particle size distribution of cementitious material has significantly promoting effects on hydration reaction rate and mechanical properties.Compared with slag without further grinding,the slag after ball milling for 4 h has an obvious improvement in reactivity,which also provides a faster hydration rate and higher compressive strength for the cementitious material.When the slag milled for 1 and 4 h is mixed at a mass ratio of 2:1 (i e,slag with D_(50) of 7.4μm and average size of 9.9μm,and slag with D_(50) value of 2.6μm and average size of 5.3μm),and a certain amount of fly ash is added in,the most obvious improvement of compressive strength of cement is achieved.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.H...Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.展开更多
The present work emphasizes the isolation of cellulose nanofiber(CNF)from the kenaf(Hibiscus cannabinus)bast through a chemo-mechanical process.In order to develop high CNF yield with superior properties of CNF for im...The present work emphasizes the isolation of cellulose nanofiber(CNF)from the kenaf(Hibiscus cannabinus)bast through a chemo-mechanical process.In order to develop high CNF yield with superior properties of CNF for improving compatibility in varied applications this method is proposed.The fiber purification involved pulping and bleaching treatments,whereas mechanical treatment was performed by grinding and high-pressure treatments.The kraft pulping as a delignification method followed by bleaching has successfully removed almost 99%lignin in the fiber with high pulp yield and delignification selectivity.The morphology of the fibers was characterized by scanning electron microscopy,which showed a smooth surface,fiber bundles,gel-shaped nanofiber,and an average size of 94.05 nm with 69%of CNF in 34–100 nm size.The chemo-mechanical process exhibited a more crystalline nature in CNF than pulp kenaf.The low zeta potential values exhibit the distribution of fibrils and colloidal suspension stability without any further agglomeration.A lower concentration of CNF is less stable exhibiting the product agglomeration.Therefore,the chemo-mechanical process for the isolation of CNF(Hibiscus cannabinus)from kenaf involves sustainable,low-cost,non-toxic,and cheap alternatives than other traditional methods.展开更多
In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed ...In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of - 1.0 μm was fabricated through pre-deformation in the recrys- tallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism.展开更多
Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical proper...Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed.展开更多
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a...The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.展开更多
Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst ...Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst of Ir/MoS_(2) nanoflowers(Ir/MoS_(2) NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS_(2) NFs with ultrafine Ir nanoparticles.A more suitable adsorption ability for the H* and *OOH intermediates was revealed,where the Ir sites were proposed as the main active center and MoS_(2) promoted the charge relocation to electronically modify the interfacial structure.The significant interfacial charge redistribution between the MoS_(2) NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction.Specifically,the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm^(-2)for OER and HER,respectively,loading on the glass carbon electrode,with high catalytic kinetics,stability,and catalytic efficiency.A two-electrode system constructed by Ir/MoS_(2) NFs drove 10 mA cm^(-2)at a cell voltage of 1.55 V,about 70 mV lower than that of the commercial Pt/C||IrO_(2) system.In addition,partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER.The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS_(2) NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS_(2) NFs.The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis.展开更多
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat...To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.展开更多
The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strateg...The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strategy is based on a pyrolysis process of predesigned N-containing polymers and Pt complexes on hard-template surface,during which Pt can be reduced by carbon from pyrolysis at high temperatures.Finally,the hollow TiO_(2)composite with stable and dispersed Pt on its inner surface was prepared.It shows an ultrahigh photocatalytic H_(2)production activity as high as 25.7 mmol h^(-1)g^(-1)with methanol as sacrificial regent,and displays an apparent quantum yield as 13.2%.The improved photocatalytic activity and stability can be attributed to the highly dispersed and ultrafine Pt nanoparticles,enhanced interaction between Pt-species and carbon support,fast photo-excited electron transport from the high graphitization degree of NC layers,ample oxygen vacancies/defects,as well as the manipulated local charge distribution of Pt/NC-layer configuration.Additionally,the universality of the proposed strategy was demonstrated by replacing metal sources(such as,Ru and Pd).This work presented a promising strategy for the design and development of novel photocatalysts,which shows a broad application prospect.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
Three lightweight Al_(2)O_(3)-MgO castables were fabricated with tabular alumina or microporous corundum as the aggregates,reactiveα-Al_(2)O_(3)micropowder,tabular alumina powder,and fused magnesia powder as the matr...Three lightweight Al_(2)O_(3)-MgO castables were fabricated with tabular alumina or microporous corundum as the aggregates,reactiveα-Al_(2)O_(3)micropowder,tabular alumina powder,and fused magnesia powder as the matrix,calcium aluminate cement as the binder,and MgO ultrafine powder(d50=5.4μm)and Al(OH)3 ultrafine powder(d50=8.2μm)as additives.The influence of aggregates and ultrafine powders on the properties,including pore size distribution,heat conductivity,thermal shock resistance,and slag resistance of lightweight refractory castables was investigated.The results show that the incorporation of microporous corundum reduces the bulk density of Al_(2)O_(3)-MgO castables,and MgO and Al(OH)3 ultrafine powders further increases the proportion of micropores in castables,which is beneficial to reducing the heat conductivity,and improving the thermal shock resistance and slag resistance of castables.Additionally,MgO ultrafine powder and Al(OH)3 ultrafine powder increase the fluidity and the strength of castables.展开更多
Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and...Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and BET techniques were used to characterize the phase composition,microstructure,and porosity of MS samples carbonated for different durations.The results showed that the main carbonation products were calcite,vaterite,and highly polymerized silica gel,with particle sizes around 1μm.The low-temperature environment retarded the carbonation reaction rate and affected the morphology and crystallization of calcium carbonate.After 480 min of carbonation,the specific surface area and porosity of MS increased substantially by 740%and 144.6%,respectively,indicating improved reactivity.The microstructure of carbonated MS became denser with calcite particles surrounded by silica gel.This study demonstrates that wet carbonation of MS at 0℃significantly enhances its properties,creating an ultrafine supplementary cementitious material with considerable CO_(2)sequestration capacity.展开更多
Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that thes...Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ...Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.展开更多
Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated ...Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated sulfuric acid as oxidant. The experiment results show that, compared with others, the purifying effect by this technology is satisfactory and is a more efficient, cheaper, and safer purification technology with less pollution and less investment. It can be put into commercial use. The related principle of the technology is discussed. It is believed that the atomic state oxygen produced during the reaction mechanism is an active substances which would react with the graphite——the main impurity existing in the detonation soot, and the reaction temperature is the key factor in the process.展开更多
The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analy...The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(grant No.52074169,No.51704280)the China Postdoctoral Science Foundation(No.2023M732109)the Opening Foundation of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2021FK02).
文摘The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives.
基金Funded by the Technology Innovation Leading Program of Shaanxi(No.2022QFY08-02)。
文摘The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase.
基金Funded by the National Natural Science Foundation of China(No.52172025)。
文摘The effects of high-volume slag-fly ash cement with different particle sizes on hydration degree,microstructure and mechanical properties were systematically studied,by means of laser particle size(DLS),X-ray diffraction (XRD),comprehensive thermal analysis (TG-DTA),scanning electron microscopy(SEM) and mechanical properties tests.The results show that suitable particle size distribution of cementitious material has significantly promoting effects on hydration reaction rate and mechanical properties.Compared with slag without further grinding,the slag after ball milling for 4 h has an obvious improvement in reactivity,which also provides a faster hydration rate and higher compressive strength for the cementitious material.When the slag milled for 1 and 4 h is mixed at a mass ratio of 2:1 (i e,slag with D_(50) of 7.4μm and average size of 9.9μm,and slag with D_(50) value of 2.6μm and average size of 5.3μm),and a certain amount of fly ash is added in,the most obvious improvement of compressive strength of cement is achieved.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金the National Natural Science Foundation of China(Project Nos.21805139,21905023,12102194,22005144 and 22005145)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+2 种基金Natural Science Foundation of Jiangsu Province(Grant No.BK20200471)the Fundamental Research Funds for the Central Universities(Grant Nos.30920041106,30921011203)Young Elite Scientists Sponsorship Program by CAST(Program,2021QNRC001).
文摘Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.
基金Ministry of Education,Culture,Research and Technology(KEMENDIKBUDRISTEK)Republic of Indonesia,for providing the Research Grant“Basic Research Scheme”No.110/E5/PG.02.00.PL/2023.
文摘The present work emphasizes the isolation of cellulose nanofiber(CNF)from the kenaf(Hibiscus cannabinus)bast through a chemo-mechanical process.In order to develop high CNF yield with superior properties of CNF for improving compatibility in varied applications this method is proposed.The fiber purification involved pulping and bleaching treatments,whereas mechanical treatment was performed by grinding and high-pressure treatments.The kraft pulping as a delignification method followed by bleaching has successfully removed almost 99%lignin in the fiber with high pulp yield and delignification selectivity.The morphology of the fibers was characterized by scanning electron microscopy,which showed a smooth surface,fiber bundles,gel-shaped nanofiber,and an average size of 94.05 nm with 69%of CNF in 34–100 nm size.The chemo-mechanical process exhibited a more crystalline nature in CNF than pulp kenaf.The low zeta potential values exhibit the distribution of fibrils and colloidal suspension stability without any further agglomeration.A lower concentration of CNF is less stable exhibiting the product agglomeration.Therefore,the chemo-mechanical process for the isolation of CNF(Hibiscus cannabinus)from kenaf involves sustainable,low-cost,non-toxic,and cheap alternatives than other traditional methods.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0304901)
文摘In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of - 1.0 μm was fabricated through pre-deformation in the recrys- tallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism.
基金supported by National Natural Science Foundation of China (No. 51971076 and No. 51771062)。
文摘Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed.
基金funded by the Zhengzhou Materials Genome Institute,the National Talents Program of China,and Key Innovation Projects of the Zhengzhou Municipal City of China.
文摘The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst of Ir/MoS_(2) nanoflowers(Ir/MoS_(2) NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS_(2) NFs with ultrafine Ir nanoparticles.A more suitable adsorption ability for the H* and *OOH intermediates was revealed,where the Ir sites were proposed as the main active center and MoS_(2) promoted the charge relocation to electronically modify the interfacial structure.The significant interfacial charge redistribution between the MoS_(2) NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction.Specifically,the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm^(-2)for OER and HER,respectively,loading on the glass carbon electrode,with high catalytic kinetics,stability,and catalytic efficiency.A two-electrode system constructed by Ir/MoS_(2) NFs drove 10 mA cm^(-2)at a cell voltage of 1.55 V,about 70 mV lower than that of the commercial Pt/C||IrO_(2) system.In addition,partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER.The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS_(2) NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS_(2) NFs.The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis.
基金Fundamental Research Funds for the Central Universities,China(No. 2232022D-13)Fundamental Research Funds of Shanghai Collaborative Innovation Center of High Performance Fibers and Composites (Province-M inistry Joint),China(No. X12812101/015)。
文摘To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields.
基金supported by the Natural Science Foundation of the Shanxi Province of China(No.201801D121069)Graduate Education Innovation Foundation of Province Shanxi of China(No.2020SY359)。
文摘The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strategy is based on a pyrolysis process of predesigned N-containing polymers and Pt complexes on hard-template surface,during which Pt can be reduced by carbon from pyrolysis at high temperatures.Finally,the hollow TiO_(2)composite with stable and dispersed Pt on its inner surface was prepared.It shows an ultrahigh photocatalytic H_(2)production activity as high as 25.7 mmol h^(-1)g^(-1)with methanol as sacrificial regent,and displays an apparent quantum yield as 13.2%.The improved photocatalytic activity and stability can be attributed to the highly dispersed and ultrafine Pt nanoparticles,enhanced interaction between Pt-species and carbon support,fast photo-excited electron transport from the high graphitization degree of NC layers,ample oxygen vacancies/defects,as well as the manipulated local charge distribution of Pt/NC-layer configuration.Additionally,the universality of the proposed strategy was demonstrated by replacing metal sources(such as,Ru and Pd).This work presented a promising strategy for the design and development of novel photocatalysts,which shows a broad application prospect.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
基金the National Natural Science Foundation of China(grant no.51774218 and 51374162)for providing financial support for this work.
文摘Three lightweight Al_(2)O_(3)-MgO castables were fabricated with tabular alumina or microporous corundum as the aggregates,reactiveα-Al_(2)O_(3)micropowder,tabular alumina powder,and fused magnesia powder as the matrix,calcium aluminate cement as the binder,and MgO ultrafine powder(d50=5.4μm)and Al(OH)3 ultrafine powder(d50=8.2μm)as additives.The influence of aggregates and ultrafine powders on the properties,including pore size distribution,heat conductivity,thermal shock resistance,and slag resistance of lightweight refractory castables was investigated.The results show that the incorporation of microporous corundum reduces the bulk density of Al_(2)O_(3)-MgO castables,and MgO and Al(OH)3 ultrafine powders further increases the proportion of micropores in castables,which is beneficial to reducing the heat conductivity,and improving the thermal shock resistance and slag resistance of castables.Additionally,MgO ultrafine powder and Al(OH)3 ultrafine powder increase the fluidity and the strength of castables.
基金support from the National Key R&D Program Intergovernmental International Science and Technology Innovation Cooperation Project(2018YFE0107300)the China Building Materials Federation(20221JBGS03-11)+2 种基金the Science and Technology Project of Henan Province(211110231400,212102310559,212102310564,222300420167,22A430022)the Opening Project of the State Key Laboratory of Green Building Materials(2021GBM06)the Henan Outstanding Foreign Scientists’Workroom(GZS2021003).
文摘Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and BET techniques were used to characterize the phase composition,microstructure,and porosity of MS samples carbonated for different durations.The results showed that the main carbonation products were calcite,vaterite,and highly polymerized silica gel,with particle sizes around 1μm.The low-temperature environment retarded the carbonation reaction rate and affected the morphology and crystallization of calcium carbonate.After 480 min of carbonation,the specific surface area and porosity of MS increased substantially by 740%and 144.6%,respectively,indicating improved reactivity.The microstructure of carbonated MS became denser with calcite particles surrounded by silica gel.This study demonstrates that wet carbonation of MS at 0℃significantly enhances its properties,creating an ultrafine supplementary cementitious material with considerable CO_(2)sequestration capacity.
基金Project (20062026) supported by Natural Science Foundation of Liaoning Province, China
文摘Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
基金supported by the National Natural Science Foundation of China(201573136,U1510105)the Scientific Research Start-up Funds of Shanxi University(RSC723)~~
文摘Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity.
文摘Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated sulfuric acid as oxidant. The experiment results show that, compared with others, the purifying effect by this technology is satisfactory and is a more efficient, cheaper, and safer purification technology with less pollution and less investment. It can be put into commercial use. The related principle of the technology is discussed. It is believed that the atomic state oxygen produced during the reaction mechanism is an active substances which would react with the graphite——the main impurity existing in the detonation soot, and the reaction temperature is the key factor in the process.
基金Project(zzyjkt2013-07B) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.