期刊文献+
共找到332篇文章
< 1 2 17 >
每页显示 20 50 100
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
1
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
下载PDF
Comparative Study on Microstructure and Mechanical Properties of Coarse-grained WC-based Cemented Carbides Sintered with Ultrafine WC or (W+C) as Additives
2
作者 于淞百 闵凡路 +6 位作者 LI De NOUDEM Guillaume Jacques ZHANG Hailong MA Jichang ZHAO Kui YAO Zhanhu 张建峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期399-409,共11页
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O... The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase. 展开更多
关键词 coarse-grained WC-based cemented carbide ultrafine WC ultrafine(W+C) microstructure mechanical properties
下载PDF
High-Volume Mineral Admixtures Cement: The Effects of Particle Size Distribution
3
作者 黄启珉 WANG Kun +3 位作者 LU Jiping YU Jianping SHENG Zhenhua 杨露 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期102-108,共7页
The effects of high-volume slag-fly ash cement with different particle sizes on hydration degree,microstructure and mechanical properties were systematically studied,by means of laser particle size(DLS),X-ray diffract... The effects of high-volume slag-fly ash cement with different particle sizes on hydration degree,microstructure and mechanical properties were systematically studied,by means of laser particle size(DLS),X-ray diffraction (XRD),comprehensive thermal analysis (TG-DTA),scanning electron microscopy(SEM) and mechanical properties tests.The results show that suitable particle size distribution of cementitious material has significantly promoting effects on hydration reaction rate and mechanical properties.Compared with slag without further grinding,the slag after ball milling for 4 h has an obvious improvement in reactivity,which also provides a faster hydration rate and higher compressive strength for the cementitious material.When the slag milled for 1 and 4 h is mixed at a mass ratio of 2:1 (i e,slag with D_(50) of 7.4μm and average size of 9.9μm,and slag with D_(50) value of 2.6μm and average size of 5.3μm),and a certain amount of fly ash is added in,the most obvious improvement of compressive strength of cement is achieved. 展开更多
关键词 ultrafine slag MICROSTRUCTURE compressive strength particle size
下载PDF
Microfluidic preparation of surfactant-free ultrafine DAAF with tunable particle size for insensitive initiator explosives
4
作者 Bo Yang Rui Li +9 位作者 Wei Cao Si-min He Jincan Zhu Qi Wu Heng Ding Jin Chen Weimiao Wang Zhiqiang Qiao Xiaodong Li Guangcheng Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期42-52,共11页
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c... High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives. 展开更多
关键词 Microfluidic preparation Screening crystallization conditions Narrow particle size distribution Low initiation sensitivity Ultrafine DAAF
下载PDF
New insights in nano-copper chromite catalyzing ultrafine AP:Evaluation of dispersity and mixing uniformity
5
作者 Yong Kou Peng Luo +8 位作者 Lei Xiao Yanping Xin Guangpu Zhang Yubing Hu Junqing Yang Hongxu Gao Fengqi Zhao Wei Jiang Gazi Hao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期120-133,共14页
Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.H... Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs. 展开更多
关键词 Nano-CuCr_(2)O_(4) Ultrafine AP Dispersity UVeVis diffuse reflectance spectroscopy Thermal decomposition
下载PDF
Isolation and Characterization of Cellulose Nanofiber(CNF)from Kenaf(Hibiscus cannabinus)Bast through the Chemo-Mechanical Process
6
作者 Rudi Dungani Mohammad Irfan Bakshi +4 位作者 Tsabita Zahra Hanifa Mustika Dewi Firda A.Syamani Melbi Mahardika Widya Fatriasari 《Journal of Renewable Materials》 EI CAS 2024年第6期1057-1069,共13页
The present work emphasizes the isolation of cellulose nanofiber(CNF)from the kenaf(Hibiscus cannabinus)bast through a chemo-mechanical process.In order to develop high CNF yield with superior properties of CNF for im... The present work emphasizes the isolation of cellulose nanofiber(CNF)from the kenaf(Hibiscus cannabinus)bast through a chemo-mechanical process.In order to develop high CNF yield with superior properties of CNF for improving compatibility in varied applications this method is proposed.The fiber purification involved pulping and bleaching treatments,whereas mechanical treatment was performed by grinding and high-pressure treatments.The kraft pulping as a delignification method followed by bleaching has successfully removed almost 99%lignin in the fiber with high pulp yield and delignification selectivity.The morphology of the fibers was characterized by scanning electron microscopy,which showed a smooth surface,fiber bundles,gel-shaped nanofiber,and an average size of 94.05 nm with 69%of CNF in 34–100 nm size.The chemo-mechanical process exhibited a more crystalline nature in CNF than pulp kenaf.The low zeta potential values exhibit the distribution of fibrils and colloidal suspension stability without any further agglomeration.A lower concentration of CNF is less stable exhibiting the product agglomeration.Therefore,the chemo-mechanical process for the isolation of CNF(Hibiscus cannabinus)from kenaf involves sustainable,low-cost,non-toxic,and cheap alternatives than other traditional methods. 展开更多
关键词 Kenaf bast fiber kraft delignification and bleaching ultrafine grinder chemo-mechanical properties CNF
下载PDF
Effect of Pre-deformation on Grain Ultrafining by Intercritical Deformation in Low-Carbon Microalloyed Steels
7
作者 Ba Li Qing-You Liu +2 位作者 Shu-Jun Jia Yi Ren Bing Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第10期1038-1048,共11页
In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed ... In this study, the effect of pre-deformation at recrystallization and non-recrystallization zone on the grain ultrafining by the subsequent intercritical deformation (ID) was investigated on low-carbon microalloyed steel. The results showed that ultrafine grain microstructure with an average size of - 1.0 μm was fabricated through pre-deformation in the recrys- tallization zone followed by ID. When pre-deformed at the non-recrystallization zone prior to ID, the grain size increased to 1.6 μm with a heterogeneous distribution along with the well-developed dynamic recovery of ferrite. The grain ultrafining mechanism was attributed to the combined action of the deformation-induced ferrite transformation and the continuous dynamic recrystallization. In particular, the continuous dynamic recrystallization process during ID occurred on the pro-eutectoid ferrite as a result of the subgrain rotation mechanism and the absorbing dislocations mechanism. 展开更多
关键词 Low-carbon microalloyed steels Intercritical deformation Ultrafine grain Continuous dynamic recrystallization Deformation-induced ferrite transformation
原文传递
Role of extrusion rate on the microstructure and tensile properties evolution of ultrahigh-strength low-alloy Mg-1.0Al-1.0Ca-0.4Mn(wt.%)alloy 被引量:6
8
作者 X.Q.Liu X.G.Qiao +3 位作者 R.S.Pei Y.Q.Chi L.Yuan M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期553-561,共9页
Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical proper... Mg-1.0Al-1.0Ca-0.4Mn(AXM1104, wt.%) low alloy was extruded at 200 ℃ with an extrusion ratio of 25 and different ram speeds from 1.0 to 7.0 mm/s. The influence of extrusion rate on microstructure and mechanical properties of the AXM1104 alloy was systematically studied. With the increasing of extrusion rate, the mean dynamically recrystallized(DRXed) grain size of the low alloy and average particles diameter of precipitate second phases were increased, while the degree of grain boundary segregation and the intensity of the basal fiber texture were decreased. With the rising of extrusion rate from 1.0 to 7.0 mm/s, the tensile yield strength(TYS) of the as-extruded AXM1104 alloy was decreased from 445 MPa to 249 MPa, while the elongation to failure(EL) was increased from 5.0% to 17.6%. The TYS, ultimate tensile strength(UTS) and EL of the AXM1104 alloy extruded at the ram speed of 1.5 mm/s was 412 MPa, 419 MPa and 12.0%, respectively,exhibiting comprehensive tensile mechanical properties with ultra-high strength and excellent plasticity. The ultra-high TYS of 412 MPa was mainly due to the strengthening from ultra-fine DRXed grains with segregation of solute atoms at grain boundaries. The strain hardening rate is increase slightly with increasing extrusion speed, which may be ascribed to the increasing mean DRXed grain size with rising extrusion speed. The higher strain hardening rate contributes to the higher EL of these AXM1104 samples extruded at higher ram speed. 展开更多
关键词 Mg-Al-Ca-Mn alloy Ultrafine grain Extrusion rate Grain boundary segregation MICROSTRUCTURE Ultrahigh strength
下载PDF
Enabling High-Performance Sodium Battery Anodes by Complete Reduction of Graphene Oxide and Cooperative In-Situ Crystallization of Ultrafine SnO_(2)Nanocrystals 被引量:2
9
作者 Junwu Sang Kangli Liu +4 位作者 Xiangdan Zhang Shijie Zhang Guoqin Cao Yonglong Shen Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期356-365,共10页
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a... The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs. 展开更多
关键词 in situ compositing microwave reduced graphene oxide sodium ion battery sodium ion battery anode ultrafine SnO_(2)nanocrystals
下载PDF
MoS_(2) nanoflowers coupled with ultrafine Ir nanoparticles for efficient acid overall water splitting reaction 被引量:1
10
作者 Chunyan Wang Lice Yu +1 位作者 Fulin Yang Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期144-152,I0005,共10页
Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst ... Bi-functional electrocatalysts for acid overall water splitting reactions are crucial but still challenging to the development of proton exchange membrane water electrolysis.Herein,an efficient bi-functional catalyst of Ir/MoS_(2) nanoflowers(Ir/MoS_(2) NFs) catalyst was reported for acidic water electrolysis which can be constructed by coupling three-dimensionally interconnected MoS_(2) NFs with ultrafine Ir nanoparticles.A more suitable adsorption ability for the H* and *OOH intermediates was revealed,where the Ir sites were proposed as the main active center and MoS_(2) promoted the charge relocation to electronically modify the interfacial structure.The significant interfacial charge redistribution between the MoS_(2) NFs and the Ir active sites synergistically induced excellent catalytic activity and stability for the water electrolysis reaction.Specifically,the catalyst required overpotentials of 270 and 35 mV to reach a kinetic current density of 10 mA cm^(-2)for OER and HER,respectively,loading on the glass carbon electrode,with high catalytic kinetics,stability,and catalytic efficiency.A two-electrode system constructed by Ir/MoS_(2) NFs drove 10 mA cm^(-2)at a cell voltage of 1.55 V,about 70 mV lower than that of the commercial Pt/C||IrO_(2) system.In addition,partial surface oxidation of Ir nanoparticles to generate high-valent Ir species was also found significant to accelerate OER.The enhanced catalytic performance was attributed to the strong metal-support interaction in the Ir/MoS_(2) NFs catalyst system that changed the electronic structure of Ir metal and promoted the synergistic catalytic effect between Ir and MoS_(2) NFs.The work presented a novel platform of Ir-catalyst for proton exchange membrane water electrolysis. 展开更多
关键词 Ultrafine Ir nanoparticles MoS_(2)nanoflowers Bi-functional electrocatalysts Water splitting reaction
下载PDF
Polypyrrole-Coated Zein/Epoxy Ultrafine Fiber Mats for Electromagnetic Interference Shielding 被引量:1
11
作者 丁润龙 戚瑞瑞 +3 位作者 刘飞 刘万双 张礼颖 蒋秋冉 《Journal of Donghua University(English Edition)》 CAS 2023年第4期351-356,共6页
To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompat... To reduce the environmental pollution and meet the needs for wearable electronic devices, new requirements for electromagnetic interference(EMI) shielding materials include flexibility, biodegradability, and biocompatibility. Herein, we reported a polypyrrole-coated zein/epoxy(PPy/ZE) ultrafine fiber mat which was inherently biodegradable and skin-friendly. In addition, it could maintain its ultrafine fibrous structure after coating, which could provide the mat with mechanical compliance, high porosity, and a large specific area for high EMI shielding. With the assistance of the epoxide cross-linking, the breaking stresses of the PPy/ZE fiber mats could achieve 3.3 MPa and 1.4 MPa and the strains were 40.1% and 83.0% in dry and wet states, respectively, which met the needs of various wearable electronic devices. Along with the extension in the PPy treatment duration, more PPy was loaded on the fiber surfaces, which formed more integrated and conductive paths to generate increasing conductivities up to 401.76 S·m^(-1). Moreover, the EMI shielding performance was raised to 26.84 dB. The biobased mats provide a green and efficient choice for EMI shielding materials, which may be a promising strategy to address EMI problems in multiple fields. 展开更多
关键词 polypyrrole(PPy) ZEIN ultrafine fiber mat electromagnetic interference(EMI)shielding electrical conductivity
下载PDF
A novel strategy for loading metal cocatalysts onto hollow nano-TiO_(2)inner surface with highly enhanced H_(2)production activity
12
作者 Nan Chen Yu Zhou +2 位作者 Songtao Cao Ruixin Wang Weizhou Jiao 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期509-518,共10页
The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strateg... The loading strategy of cocatalysts affects its activity exerting and atom utilization.Here,a novel strategy for loading precious metal(Pt)cocatalysts by means of ultrathin N-doped carbon layer is reported.The strategy is based on a pyrolysis process of predesigned N-containing polymers and Pt complexes on hard-template surface,during which Pt can be reduced by carbon from pyrolysis at high temperatures.Finally,the hollow TiO_(2)composite with stable and dispersed Pt on its inner surface was prepared.It shows an ultrahigh photocatalytic H_(2)production activity as high as 25.7 mmol h^(-1)g^(-1)with methanol as sacrificial regent,and displays an apparent quantum yield as 13.2%.The improved photocatalytic activity and stability can be attributed to the highly dispersed and ultrafine Pt nanoparticles,enhanced interaction between Pt-species and carbon support,fast photo-excited electron transport from the high graphitization degree of NC layers,ample oxygen vacancies/defects,as well as the manipulated local charge distribution of Pt/NC-layer configuration.Additionally,the universality of the proposed strategy was demonstrated by replacing metal sources(such as,Ru and Pd).This work presented a promising strategy for the design and development of novel photocatalysts,which shows a broad application prospect. 展开更多
关键词 Ultrathin carbon layer Ultrafine Pt nanoparticles LOADING Hollow photocatalyst Photocatalytic hydrogen production
下载PDF
Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys
13
作者 Xiangyu WANG Chao HE +3 位作者 Xue Li Lang LI Yongjie LIU Qingyuan WANG 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2811-2822,共12页
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th... Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior. 展开更多
关键词 Fatigue crack initiation Long-period stacking ordered structure Mg alloys Ultrafine grains Very high cycle fatigue
下载PDF
Fabrication and Improving Properties of Lightweight Al_(2)O_(3)-MgO Castables for L adle Working Lining
14
作者 WANG Zhiqiang LEI Zhongxing +4 位作者 XU Guotao PENG Xiaoqian ZHU Boquan LIU Li GUO Zongqi 《China's Refractories》 CAS 2023年第1期6-13,共8页
Three lightweight Al_(2)O_(3)-MgO castables were fabricated with tabular alumina or microporous corundum as the aggregates,reactiveα-Al_(2)O_(3)micropowder,tabular alumina powder,and fused magnesia powder as the matr... Three lightweight Al_(2)O_(3)-MgO castables were fabricated with tabular alumina or microporous corundum as the aggregates,reactiveα-Al_(2)O_(3)micropowder,tabular alumina powder,and fused magnesia powder as the matrix,calcium aluminate cement as the binder,and MgO ultrafine powder(d50=5.4μm)and Al(OH)3 ultrafine powder(d50=8.2μm)as additives.The influence of aggregates and ultrafine powders on the properties,including pore size distribution,heat conductivity,thermal shock resistance,and slag resistance of lightweight refractory castables was investigated.The results show that the incorporation of microporous corundum reduces the bulk density of Al_(2)O_(3)-MgO castables,and MgO and Al(OH)3 ultrafine powders further increases the proportion of micropores in castables,which is beneficial to reducing the heat conductivity,and improving the thermal shock resistance and slag resistance of castables.Additionally,MgO ultrafine powder and Al(OH)3 ultrafine powder increase the fluidity and the strength of castables. 展开更多
关键词 lightweight alumina-magnesia castables microporous corundum ultrafine powder1
下载PDF
Unveiling the Carbonation Behavior and Microstructural Changes of Magnesium Slag at 0℃
15
作者 Junhao Ye Songhui Liu +2 位作者 Jingrui Fang Xuemao Guan Hui Guo 《Journal of Building Material Science》 2023年第2期37-50,共14页
Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and... Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and BET techniques were used to characterize the phase composition,microstructure,and porosity of MS samples carbonated for different durations.The results showed that the main carbonation products were calcite,vaterite,and highly polymerized silica gel,with particle sizes around 1μm.The low-temperature environment retarded the carbonation reaction rate and affected the morphology and crystallization of calcium carbonate.After 480 min of carbonation,the specific surface area and porosity of MS increased substantially by 740%and 144.6%,respectively,indicating improved reactivity.The microstructure of carbonated MS became denser with calcite particles surrounded by silica gel.This study demonstrates that wet carbonation of MS at 0℃significantly enhances its properties,creating an ultrafine supplementary cementitious material with considerable CO_(2)sequestration capacity. 展开更多
关键词 Wet carbonation Ultrafine supplementary cementitious materials Calcium carbonate Magnesium slag
下载PDF
Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate 被引量:21
16
作者 印万忠 杨小生 +2 位作者 周大鹏 李艳军 吕振福 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期652-664,共13页
Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that thes... Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential. 展开更多
关键词 sodium oleate ultrafine hematite shear hydrophobic flocculation extended DLVO theory
下载PDF
Dynamic experiments on flocculation and sedimentation of argillized ultrafine tailings using fly-ash-based magnetic coagulant 被引量:11
17
作者 李帅 王新民 张钦礼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1975-1984,共10页
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ... In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines. 展开更多
关键词 super-large-scale argillized ultrafine tailings flocculation and sedimentation fly-ash-based magnetic coagulant dynamic experimental device response surface methodology synergy mechanism
下载PDF
N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes 被引量:8
18
作者 梁继芬 张晓明 +1 位作者 景铃胭 杨恒权 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1252-1260,共9页
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ... Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity. 展开更多
关键词 N-doped mesoporous carbon Multifunctional support Ultrafine platinum nanoparticle Hydrogenation reaction Halogenated nitrobenzene
下载PDF
Purification of Ultrafine Diamond Synthesized by Detonation 被引量:2
19
作者 仝毅 马峰 +1 位作者 恽寿榕 黄风雷 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期262-266,共5页
Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated ... Ultrafine diamond (UFD) is produced at high pressure and high temperature generated by explosive detonation. We manage to search for a new technology to purify the UFD by using potassium permanganate and concentrated sulfuric acid as oxidant. The experiment results show that, compared with others, the purifying effect by this technology is satisfactory and is a more efficient, cheaper, and safer purification technology with less pollution and less investment. It can be put into commercial use. The related principle of the technology is discussed. It is believed that the atomic state oxygen produced during the reaction mechanism is an active substances which would react with the graphite——the main impurity existing in the detonation soot, and the reaction temperature is the key factor in the process. 展开更多
关键词 ultrafine diamond (UFD) DETONATION PURIFICATION potassium permanganate
下载PDF
Microstructure and mechanical properties of cryo-rolled AA6061 Al alloy 被引量:2
20
作者 黄元春 颜徐宇 邱涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期12-18,共7页
The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analy... The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one. 展开更多
关键词 AA6061 Al alloy cryo-rolling ultrafine grain structure disperse distribution mechanical properties
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部