Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s...Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.展开更多
Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and g...Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.展开更多
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c...Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.展开更多
The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and bar...The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and barite were formed in ultralow permeability reservoirs during waterflooding operations. Some asphaltene precipitates on the surface of formation rock would influence the reservoir porosity, permeability, wettability, and electrical properties. In this paper, the changes of physical, electrical, and fluid properties of ultralow permeability reservoirs during waterflooding operations were analyzed. This provides important information to improve waterflooding performance in ultralow permeability reservoirs.展开更多
AIM:There is some evidence of functional superiority of colonic J-pouch over straight coloanal anastomosis (CM) in ultralow anterior resection (ULAR) or intersphincteric resection. On the assumption that colonic J-pou...AIM:There is some evidence of functional superiority of colonic J-pouch over straight coloanal anastomosis (CM) in ultralow anterior resection (ULAR) or intersphincteric resection. On the assumption that colonic J-pouch anal anastomosis is superior to straight CM in ULAR with upper sphincter excision (USE: excision of the upper part of the internal sphincter) for low-lying rectal cancer, we compare functional outcome of colonic J-pouch vsthe straight CM. METHODS: Fifty patients of one hundred and thirty-three rectal cancer patients in whom lower margin of the tumors were located between 3 and 5 cm from the anal verge received ULAR including USE from September 1998 to January 2002. Patients were randomized for reconstruction using either a straight (n = 26) or a colonic J-pouch anastomosis (n = 24) with a temporary diverting-loop ileostomy. All patients were followed-up prospectively by a standardized questionnaire [Fecal Inco-ntinence Severity Index (FISI) scores and Fecal Incontinence Quality of Life (FIQL) scales]. RESULTS: We found that, compared to straight anastomosis patients, the frequency of defecation was significantly lower in J-pouch anastomosis patients for 10 mo after ileostomy takedown. The FISI scores and FIQL scales were significantly better in J-pouch patients than in straight patients at both 3 and 12 mo after ileostomy takedown. Furthermore, we found that FISI scores highly correlated with FIQL scales. CONCLUSION: This study indicates that colonic J-pouch anal anastomosis decreases the severity of fecal incontinence and improves the quality of life for 10 mo after ileostomy takedown in patients undergoing ULAR with USE for low-lying rectal cancer.展开更多
Proppant plays a critical role in the exploitation of oil and gas,especially in the development of nonconventional oil and gas resources.Proppants are small spheres that have adequate strength to withstand high closur...Proppant plays a critical role in the exploitation of oil and gas,especially in the development of nonconventional oil and gas resources.Proppants are small spheres that have adequate strength to withstand high closure stresses to keep cracks open;therefore,hydrocarbon fows smoothly into the wellbore.However,traditional proppants are prone to settling in hydraulic fracturing operations,which seriously afects the operation efect.To this end,ultralow-weight proppants have been extensively employed in the petroleum industry.One of the widespread forms of ultralow-weight proppant application in the oil and gas industry is related to light density.Ultralow-weight proppants will provide substantial fow paths with a considerably high propped surface area and remarkably reduce fne generation and scaling.This paper presents a comprehensive review of over 50 papers published in the past several decades on ultralow-weight proppants.The purpose of this study is to provide an overview of the current ultralow-weight proppant development status in raw materials,manufacturing process,performance characteristics,hydrophobic and lipophilic capabilities,and feld application to promote the research of new ultralow-weight proppants.Lastly,this study analyzes the current challenges and emphasizes the development direction of fractured proppants.展开更多
Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal opera...Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures.Herein,a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed.The electrochemical windows of the chloride hydrogel electrolytes are enlarged by>1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds,which highly facilitates the operation of electrolytes at ultralow temperatures,as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry.Based on the Hofmeister effect,the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl_(2)and 6 M LiCl can be strongly interrupted,thus exhibiting a sufficient ionic conductivity of 1.14 mS cm;and a low activation energy of 0.21 e V at-50℃.This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g;at-50℃,while the capacity retention remains~100%after 2000 cycles.These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.展开更多
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proto...Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.展开更多
The human visual system,dependent on retinal cells,can be regarded as a complex combination of optical system and nervous system.Artificial retinal system could mimic the sensing and processing function of human eyes....The human visual system,dependent on retinal cells,can be regarded as a complex combination of optical system and nervous system.Artificial retinal system could mimic the sensing and processing function of human eyes.Optically stimulated synaptic devices could serve as the building blocks for artificial retinas and subsequent information transmission system to brain.Herein,photonic synaptic transistors based on polycrystalline MoS_(2),which could simulate human visual perception and brain storage,are presented.Moreover,the photodetection range from visible light to near-infrared light of MoS_(2) multilayer could extend human eyes’vision limitation to near-infrared light.Additionally,the photonic synaptic transistor shows an ultrafast speed within 5μs and ultralow power consumption under optical stimuli about 40 aJ,several orders of magnitude lower than biological synapses(50 ms and 10 fJ).Furthermore,the backgate control could act as emotional modulation of the artificial brain to enhance or suppress memory function,i.e.the intensity of photoresponse.The proposed carrier trapping/detrapping as the main working mechanism is presented for the device.In addition,synaptic functionalities including short synaptic plasticity,long synaptic plasticity and paired-pulse facilitation could be successfully simulated based on the prepared device.Furthermore,the large difference between short synaptic plasticity and long synaptic plasticity reveals the better image pre-processing function of the prepared photonic synapses.The classical Pavlovian conditioning associated with the associative learning is successfully implemented as well.Therefore,the efficient and rich functionalities demonstrate the potential of the MoS_(2) synaptic device that integrates sensing-memory-preprocessing capabilities for realizing artificial neural networks with different emotions that mimic human retina and brain.展开更多
800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformati...800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) tech- nique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500℃ (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when t8/5 increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions.展开更多
The Heck coupling reactions of aryl halides and olefins were performed under the microwave assistance. Interestingly, the ultralow concentration of transition metals (in ppb) coming from the reactants could catalyze t...The Heck coupling reactions of aryl halides and olefins were performed under the microwave assistance. Interestingly, the ultralow concentration of transition metals (in ppb) coming from the reactants could catalyze the Heck coupling reactions under microwave irradiation, without addition of any catalysts, ligands and phase-transfer agents. The influences of bases, solvents and temperature were discussed, and the reaction rate was enhanced largely in the mixed solvents of NMP and water due to the solubility of base in water.展开更多
An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the...An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the drift region and an oxide trench inserted in the drift region (UG MOSFET). In the on-state, the U-shaped gate induces a high density electron accumulation layer along its sidewall, which provides a low-resistance current path from the source to the drain, realizing an ultralow Ron,sp. The value of Ron,sp is almost independent of the drift doping concentration, and thus the UG MOSFET breaks through the contradiction relationship between R p and the off-state BV. Moreover, the oxide trench folds the drift region, enabling the UG MOSFET to support a high BV with a shortened cell pitch. The UG MOSFET achieves an Ron,sp of 2 mΩ·cm^2 and an improved BV of 216 V, superior to the best existing state-of-the-art transistors at the same BV level展开更多
基金financially supported by the National Natural Science Foundation of China(No.5217042069)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(CAST)(No.YESS20200103)the Fundamental Research Funds for the Central Universities(No.265QZ2022004)。
文摘Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts.
基金supported financially by the National Key Research and Development Program of China(Grant No.2023YFB4402301)the National Science Fund for Distinguished Young Scholars(Grant No.52025022)+3 种基金the National Natural Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,11974072,52372137,and 52272140)the“111”Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Grant Nos.2412022QD036 and 2412023YQ004)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC,and 20210509045RQ)。
文摘Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,21890750,U2032161,12147105)+8 种基金the USTC Research Funds of the Double First-Class Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600,2022YFA1203601,2022YFA1203602)the Natural Science Foundation of China-Anhui Joint Fund(U23A20121)the Outstanding Youth Foundation of Anhui Province(2208085J14)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Users with Excellence Project of Hefei Science Center CAS(2021HSC-UE004)the Fellowship of the China Postdoctoral Science Foundation(2022M710141)the open foundation of the Key Laboratory of the Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
基金the financial support from the major science and technology project of Petrochina(Key Technology Study of Stable Production and Enhanced Oil Recovery in the Changqing Oil field.No.2011E-1305)
文摘The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and barite were formed in ultralow permeability reservoirs during waterflooding operations. Some asphaltene precipitates on the surface of formation rock would influence the reservoir porosity, permeability, wettability, and electrical properties. In this paper, the changes of physical, electrical, and fluid properties of ultralow permeability reservoirs during waterflooding operations were analyzed. This provides important information to improve waterflooding performance in ultralow permeability reservoirs.
文摘AIM:There is some evidence of functional superiority of colonic J-pouch over straight coloanal anastomosis (CM) in ultralow anterior resection (ULAR) or intersphincteric resection. On the assumption that colonic J-pouch anal anastomosis is superior to straight CM in ULAR with upper sphincter excision (USE: excision of the upper part of the internal sphincter) for low-lying rectal cancer, we compare functional outcome of colonic J-pouch vsthe straight CM. METHODS: Fifty patients of one hundred and thirty-three rectal cancer patients in whom lower margin of the tumors were located between 3 and 5 cm from the anal verge received ULAR including USE from September 1998 to January 2002. Patients were randomized for reconstruction using either a straight (n = 26) or a colonic J-pouch anastomosis (n = 24) with a temporary diverting-loop ileostomy. All patients were followed-up prospectively by a standardized questionnaire [Fecal Inco-ntinence Severity Index (FISI) scores and Fecal Incontinence Quality of Life (FIQL) scales]. RESULTS: We found that, compared to straight anastomosis patients, the frequency of defecation was significantly lower in J-pouch anastomosis patients for 10 mo after ileostomy takedown. The FISI scores and FIQL scales were significantly better in J-pouch patients than in straight patients at both 3 and 12 mo after ileostomy takedown. Furthermore, we found that FISI scores highly correlated with FIQL scales. CONCLUSION: This study indicates that colonic J-pouch anal anastomosis decreases the severity of fecal incontinence and improves the quality of life for 10 mo after ileostomy takedown in patients undergoing ULAR with USE for low-lying rectal cancer.
基金The study was supported by Science Foundation of China University of Petroleum,Beijing(No.2462019YJRC008)National Natural Science Foundation of China(No.52074312).
文摘Proppant plays a critical role in the exploitation of oil and gas,especially in the development of nonconventional oil and gas resources.Proppants are small spheres that have adequate strength to withstand high closure stresses to keep cracks open;therefore,hydrocarbon fows smoothly into the wellbore.However,traditional proppants are prone to settling in hydraulic fracturing operations,which seriously afects the operation efect.To this end,ultralow-weight proppants have been extensively employed in the petroleum industry.One of the widespread forms of ultralow-weight proppant application in the oil and gas industry is related to light density.Ultralow-weight proppants will provide substantial fow paths with a considerably high propped surface area and remarkably reduce fne generation and scaling.This paper presents a comprehensive review of over 50 papers published in the past several decades on ultralow-weight proppants.The purpose of this study is to provide an overview of the current ultralow-weight proppant development status in raw materials,manufacturing process,performance characteristics,hydrophobic and lipophilic capabilities,and feld application to promote the research of new ultralow-weight proppants.Lastly,this study analyzes the current challenges and emphasizes the development direction of fractured proppants.
基金We acknowledge the financial support from the National Natural Science Foundation of China(NSFC)(21875055 and 21674031)the Natural Science Foundation of Guangdong Province of China(2019A1515110447)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2019B1515120008)the Key-Area Research and Development Program of Guangdong Province(2021B0101260001)and the Characteristic Innovation Research Project of College Teachers of Foshan(2019XCC03)Open access funding provided by Shanghai Jiao Tong University
文摘Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures.Herein,a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed.The electrochemical windows of the chloride hydrogel electrolytes are enlarged by>1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds,which highly facilitates the operation of electrolytes at ultralow temperatures,as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry.Based on the Hofmeister effect,the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl_(2)and 6 M LiCl can be strongly interrupted,thus exhibiting a sufficient ionic conductivity of 1.14 mS cm;and a low activation energy of 0.21 e V at-50℃.This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g;at-50℃,while the capacity retention remains~100%after 2000 cycles.These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.
基金The authors greatly appreciate the support from the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
基金This work was financially supported by the National Key Research and Development Program of China(2019YFB2203400)the“111 Project”(B20030)+3 种基金the UESTC Shared Research Facilities of Electromagnetic Wave and Matter Interaction(Y0301901290100201)the Fundamental Research Funds for the Central Universities(ZYGX2019Z018)the National Natural Science Foundation of China(61974014)the Innovation Group Project of Sichuan Province(20CXTD0090).
文摘The human visual system,dependent on retinal cells,can be regarded as a complex combination of optical system and nervous system.Artificial retinal system could mimic the sensing and processing function of human eyes.Optically stimulated synaptic devices could serve as the building blocks for artificial retinas and subsequent information transmission system to brain.Herein,photonic synaptic transistors based on polycrystalline MoS_(2),which could simulate human visual perception and brain storage,are presented.Moreover,the photodetection range from visible light to near-infrared light of MoS_(2) multilayer could extend human eyes’vision limitation to near-infrared light.Additionally,the photonic synaptic transistor shows an ultrafast speed within 5μs and ultralow power consumption under optical stimuli about 40 aJ,several orders of magnitude lower than biological synapses(50 ms and 10 fJ).Furthermore,the backgate control could act as emotional modulation of the artificial brain to enhance or suppress memory function,i.e.the intensity of photoresponse.The proposed carrier trapping/detrapping as the main working mechanism is presented for the device.In addition,synaptic functionalities including short synaptic plasticity,long synaptic plasticity and paired-pulse facilitation could be successfully simulated based on the prepared device.Furthermore,the large difference between short synaptic plasticity and long synaptic plasticity reveals the better image pre-processing function of the prepared photonic synapses.The classical Pavlovian conditioning associated with the associative learning is successfully implemented as well.Therefore,the efficient and rich functionalities demonstrate the potential of the MoS_(2) synaptic device that integrates sensing-memory-preprocessing capabilities for realizing artificial neural networks with different emotions that mimic human retina and brain.
基金This work was financially supported by the Major State Basic Research Development Program of China (No.1998061500)
文摘800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) tech- nique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500℃ (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when t8/5 increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions.
文摘The Heck coupling reactions of aryl halides and olefins were performed under the microwave assistance. Interestingly, the ultralow concentration of transition metals (in ppb) coming from the reactants could catalyze the Heck coupling reactions under microwave irradiation, without addition of any catalysts, ligands and phase-transfer agents. The influences of bases, solvents and temperature were discussed, and the reaction rate was enhanced largely in the mixed solvents of NMP and water due to the solubility of base in water.
基金Supported by the National Natural Science Foundation of China under Grant No 61376079the Fundamental Research Funds for the Central Universities under Grant No ZYGX2013J043
文摘An ultralow specific on-resistance (Ron,sp) trench metal-oxide-semiconductor field effect transistor (MOSFET) with an improved off-state breakdown voltage (BV) is proposed. It features a U-shaped gate around the drift region and an oxide trench inserted in the drift region (UG MOSFET). In the on-state, the U-shaped gate induces a high density electron accumulation layer along its sidewall, which provides a low-resistance current path from the source to the drain, realizing an ultralow Ron,sp. The value of Ron,sp is almost independent of the drift doping concentration, and thus the UG MOSFET breaks through the contradiction relationship between R p and the off-state BV. Moreover, the oxide trench folds the drift region, enabling the UG MOSFET to support a high BV with a shortened cell pitch. The UG MOSFET achieves an Ron,sp of 2 mΩ·cm^2 and an improved BV of 216 V, superior to the best existing state-of-the-art transistors at the same BV level
基金support provided by the National Natural Science Foundation of China(No.21968013)Fundamental Research Project of Yunnan Province,China(No.202201AT070229)Kunming University of Technology High-level Talent Platform Construction Project of Science and Technology,China(No.KKKP201752023).