期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Biodegradable and flexible i-carrageenan based RRAM with ultralow power consumption
1
作者 卞景垚 陶冶 +4 位作者 王中强 赵晓宁 林亚 徐海阳 刘益春 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期21-27,共7页
Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and g... Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics. 展开更多
关键词 RRAM transient electronics i-carrageenan ultralow power consumption
下载PDF
Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage 被引量:4
2
作者 Caihong Li Wen Du +7 位作者 Yixuan Huang Jihua Zou Lingzhi Luo Song Sun Alexander OGovorov Jiang Wu Hongxing Xu Zhiming Wang 《Opto-Electronic Advances》 SCIE EI CAS 2022年第9期1-13,共13页
The human visual system,dependent on retinal cells,can be regarded as a complex combination of optical system and nervous system.Artificial retinal system could mimic the sensing and processing function of human eyes.... The human visual system,dependent on retinal cells,can be regarded as a complex combination of optical system and nervous system.Artificial retinal system could mimic the sensing and processing function of human eyes.Optically stimulated synaptic devices could serve as the building blocks for artificial retinas and subsequent information transmission system to brain.Herein,photonic synaptic transistors based on polycrystalline MoS_(2),which could simulate human visual perception and brain storage,are presented.Moreover,the photodetection range from visible light to near-infrared light of MoS_(2) multilayer could extend human eyes’vision limitation to near-infrared light.Additionally,the photonic synaptic transistor shows an ultrafast speed within 5μs and ultralow power consumption under optical stimuli about 40 aJ,several orders of magnitude lower than biological synapses(50 ms and 10 fJ).Furthermore,the backgate control could act as emotional modulation of the artificial brain to enhance or suppress memory function,i.e.the intensity of photoresponse.The proposed carrier trapping/detrapping as the main working mechanism is presented for the device.In addition,synaptic functionalities including short synaptic plasticity,long synaptic plasticity and paired-pulse facilitation could be successfully simulated based on the prepared device.Furthermore,the large difference between short synaptic plasticity and long synaptic plasticity reveals the better image pre-processing function of the prepared photonic synapses.The classical Pavlovian conditioning associated with the associative learning is successfully implemented as well.Therefore,the efficient and rich functionalities demonstrate the potential of the MoS_(2) synaptic device that integrates sensing-memory-preprocessing capabilities for realizing artificial neural networks with different emotions that mimic human retina and brain. 展开更多
关键词 MoS_(2)synaptic transistors visual perception ultralow power consumption MEMORY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部