The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the ...The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou'an ultramafic complex is ferruginous, with m/f = 4.79-5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high S7Sr/S6Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/ Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5 ± 3.7 Ma.展开更多
The tectonic setting of podiform chromitite formation still remains highly debated. There is a close correlation between tectonic settings and oxygen fugacity(fO2)(e.g., Ballhaus, 1993;Dare et al., 2009;Parkinson and ...The tectonic setting of podiform chromitite formation still remains highly debated. There is a close correlation between tectonic settings and oxygen fugacity(fO2)(e.g., Ballhaus, 1993;Dare et al., 2009;Parkinson and Arculus, 1999). Here we present results of fO2 of chromites determined by M?ssbauer spectroscopy from both the Luobusha and Dazhuqu areas along Yarlung Zangbo suture zone, Southern Tibet. The fO2 values(-1.02~0.04 log units against the FMQ buffer) and Cr#(22~54%) in chromites from lherzolites and harzburgites of both areas are similar to those of abyssal peridotites, indicating that they may be residues after partial melting at spreading centers. However, both dunite envelopes and chromitites from Luobusha have high fO2 values(0.04~2.25 log units) and Cr#(73~84%), showing an affinity to boninitic melts, and thus form in a suprasubduction zone. Dazhuqu dunites show diverse fO2 values(-0.22~2.19 log units) and Cr#(22~82%), indicating that they form in distinct settings. Chromitites and chromite dunites from Dazhuqu have low fO2 values(-0.3~0.71 log units) and Cr#(16~63%), both of which are similar to those of MORB-like basalts, inferring that they form in an extensional setting. Both high-Cr and high-Al chromitites from other typical podiform chromite ore deposits, such as Kempirsai, Oman, and Albania ophiolites, also show high fO2 values(e.g., Chashchukhin and Votyakov, 2009;Melcher et al., 1997;Quintiliani et al., 2006;Rollinson and Adetunji, 2015), while the distribution-limited small chromitites and chromite dunites from Dazhuqu exhibit low fO2 values. The phenomenon infers that the suprasubduction zone is more beneficial to the formation of podiform chromitites.展开更多
基金granted by the National Natural Science Fund of China (No. 41072058)the Scientific Research Special Subject for Public Welfare Profession (200911007 and201011058)China central college fund(CHD2011TD007)
文摘The Zhou'an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou'an ultramafic complex is ferruginous, with m/f = 4.79-5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high S7Sr/S6Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/ Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5 ± 3.7 Ma.
基金granted by the China Geological Survey(Grant No.121201102000150069)
文摘The tectonic setting of podiform chromitite formation still remains highly debated. There is a close correlation between tectonic settings and oxygen fugacity(fO2)(e.g., Ballhaus, 1993;Dare et al., 2009;Parkinson and Arculus, 1999). Here we present results of fO2 of chromites determined by M?ssbauer spectroscopy from both the Luobusha and Dazhuqu areas along Yarlung Zangbo suture zone, Southern Tibet. The fO2 values(-1.02~0.04 log units against the FMQ buffer) and Cr#(22~54%) in chromites from lherzolites and harzburgites of both areas are similar to those of abyssal peridotites, indicating that they may be residues after partial melting at spreading centers. However, both dunite envelopes and chromitites from Luobusha have high fO2 values(0.04~2.25 log units) and Cr#(73~84%), showing an affinity to boninitic melts, and thus form in a suprasubduction zone. Dazhuqu dunites show diverse fO2 values(-0.22~2.19 log units) and Cr#(22~82%), indicating that they form in distinct settings. Chromitites and chromite dunites from Dazhuqu have low fO2 values(-0.3~0.71 log units) and Cr#(16~63%), both of which are similar to those of MORB-like basalts, inferring that they form in an extensional setting. Both high-Cr and high-Al chromitites from other typical podiform chromite ore deposits, such as Kempirsai, Oman, and Albania ophiolites, also show high fO2 values(e.g., Chashchukhin and Votyakov, 2009;Melcher et al., 1997;Quintiliani et al., 2006;Rollinson and Adetunji, 2015), while the distribution-limited small chromitites and chromite dunites from Dazhuqu exhibit low fO2 values. The phenomenon infers that the suprasubduction zone is more beneficial to the formation of podiform chromitites.