Au nanoparticles were precipitated inside Au+-doped glass samples after irradiation by femtosecond laser or x-ray. Femtosecond laser and X-ray irradiation result in decreasing of anneal temperature and critical size f...Au nanoparticles were precipitated inside Au+-doped glass samples after irradiation by femtosecond laser or x-ray. Femtosecond laser and X-ray irradiation result in decreasing of anneal temperature and critical size for the precipitation of Au nanoparticles.展开更多
The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can man...The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.展开更多
In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an anal...The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.展开更多
The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expan...The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.展开更多
The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer proce...The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer process from the continuum state down to the bound vibrational states can be controlled by the driving laser. The effects of laser pulse parameters and the initial momentum of the two collision atoms on the vibrational population of the product HF are discussed in detail. Photodissociation accompanied with the photoassociation process is also described.展开更多
A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma...A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma interaction. The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.展开更多
By using a one-dimensional self-consistent relativistic fluid model, an investigation is made numerically on relativistic electromagnetic solitons with a high intensity in cold overdense plasmas with an electrons' in...By using a one-dimensional self-consistent relativistic fluid model, an investigation is made numerically on relativistic electromagnetic solitons with a high intensity in cold overdense plasmas with an electrons' initial velocity opposite to the laser propagating direction. Two types of standing solitons with zero group velocity are found at the given electrons' initial velocities. One is single-humped with a weakly relativistic intensity; the another is multi-humped with a strong relativistic amplitude. The properties of these two types of solitons are presented in detail.展开更多
A set of exact one-dlmensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electro...A set of exact one-dlmensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.展开更多
The spectrum of harmonics generated and propagated in ionized noble gas has been analyzed using one-dimensional wave propagation equation. The result shows that the spectral lines of harmonic become broadened and then...The spectrum of harmonics generated and propagated in ionized noble gas has been analyzed using one-dimensional wave propagation equation. The result shows that the spectral lines of harmonic become broadened and then split into two peaks when the laser intensity is strong enough to ionize the noble gas. The influence of laser parameters and gas pressure on the splitting has been made clear.展开更多
We theoretically investigate the quantum path selection in an ultraviolet (UV)-assisted near-infrared field with an UV energy below the ionization threshold. By calculating the ionization probability with different ...We theoretically investigate the quantum path selection in an ultraviolet (UV)-assisted near-infrared field with an UV energy below the ionization threshold. By calculating the ionization probability with different assistant UV frequencies, we find that a resonance-enhanced ionization peak emerges in the region Euv 〈 Ip, where Euv is the photon energy and Ip is the ionization energy. With an attosecond pulse train (APT) centered in the resonance region, we show that the short quantum path can be well selected in the continuum case. By performing the electron trajectory analysis, we have further explained the physical mechanism of the quantum path selection. Moreover, we also demonstrate that in the resonance region, the harmonic emission from the selected paths is more efficient than that with the APT energy above the ionization threshold.展开更多
Anisotropic dewetting polydimethylsiloxane (PDMS) surfaces, which consist of groove-like micro/ nanostructures (so-called hierarchical structures), are fabricated using an ultrashort pulsed laser. The contact angl...Anisotropic dewetting polydimethylsiloxane (PDMS) surfaces, which consist of groove-like micro/ nanostructures (so-called hierarchical structures), are fabricated using an ultrashort pulsed laser. The contact angles (CAs) are measured parallel to the microgrooves, which are always larger than those measured perpendicular to the microgrooves, exhibiting a superhydrophobic anisotropy of approximately 4°on these fabricated PDMS surfaces at optimized parameters. These pulsed-laser irradiated surfaces exhibit enhanced hydrophobicity with CAs that increase from 116°to 156°while preserving the anisotropic dewetting. Additionally, the wettability of the surfaces with different morphologies is investigated. The temporal evolution of the wettability of the pulsed-laser irradiated PDMS surface is also observed within the first few hours after pulsed laser irradiation.展开更多
The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution...The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology(large or small ballistic range).In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source.展开更多
Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optica...Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.展开更多
Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently p...Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.展开更多
Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashor...Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics.In addition,we illustrate a process chain based on moulding to recreate the laser-processed samples out of polydimethylsiloxane,polystyrol and copper.With all described methods,samples of large sizes can be manufactured,therefore allowing time-efficient,cost-reduced and reliable ways to fabricate large quantities of identical targets.展开更多
A study of the structure of the electric and magnetic fields of ultraintense laser pulses focused by an off-axis parabolic mirror is reported. At first, a theoretical model is laid out, whose final equations integrati...A study of the structure of the electric and magnetic fields of ultraintense laser pulses focused by an off-axis parabolic mirror is reported. At first, a theoretical model is laid out, whose final equations integration allows the space and time structure of the fields to be retrieved. The model is then employed to investigate the field patterns at different times within the optical cycle, for off-axis parabola parameters normally employed in the context of ultraintense laser–plasma interaction experiments. The results show that nontrivial, complex electromagnetic field patterns are observed at the time at which the electric and magnetic fields are supposed to vanish. The importance of this effect is then studied for different laser polarizations, f numbers and off-axis angles.展开更多
The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown ...The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture', inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.展开更多
An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in ...An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.展开更多
The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target ...The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m.This process,called target normal sheath acceleration,involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics.At the SPARC LAB Test Facility,the high-power laser FLAME is employed in experiments with solid targets,aiming to study possible correlations between ballistic fast electrons and accelerated protons.In detail,we have installed in the interaction chamber two different diagnostics,each one devoted to characterizing one beam.The first relies on electro-optic sampling,and it has been adopted to completely characterize the ultrafast electron components.On the other hand,a time-of-flight detector,based on chemical-vapour-deposited diamond,has allowed us to retrieve the proton energy spectrum.In this work,we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.展开更多
文摘Au nanoparticles were precipitated inside Au+-doped glass samples after irradiation by femtosecond laser or x-ray. Femtosecond laser and X-ray irradiation result in decreasing of anneal temperature and critical size for the precipitation of Au nanoparticles.
文摘The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
文摘The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10535070 and 10674145)the National Basic Research Program of China (Grant No 2006CB806000)the Shanghai Supercomputer Center (SSC)
文摘The simulations of three-dimensional particle dynamics show that when irradiated by an ultrashort intense laser pulse, the deuterated methane cluster expands and the majority of deuterons overrun the more slowly expanding carbon ions, resulting in the creation of two separated subelusters. The enhanced deuteron kinetic energy and a narrow peak around the energy maximum in the deuteron energy distribution make a considerable contribution to the efficiency of nuclear fusion compared with the ease of homonuelear deuterium clusters. With the intense laser irradiation, the nuclear fusion yield increases with the increase of the cluster size, so that deuterated heteronuelear clusters with larger sizes are required to achieve a greater neutron yield.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674022 and 20633070).
文摘The laser-induced vibrational state-selectivity of product HF in photoassociation reaction H+F→HF is theoret- ically investigated by using the time-dependent quantum wave packet method. The population transfer process from the continuum state down to the bound vibrational states can be controlled by the driving laser. The effects of laser pulse parameters and the initial momentum of the two collision atoms on the vibrational population of the product HF are discussed in detail. Photodissociation accompanied with the photoassociation process is also described.
基金Project supported by the National Natural Science Foundation of China(Grant No10574010)
文摘A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma interaction. The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.
基金supported by National Natural Science Foundation of China(No.10335020)
文摘By using a one-dimensional self-consistent relativistic fluid model, an investigation is made numerically on relativistic electromagnetic solitons with a high intensity in cold overdense plasmas with an electrons' initial velocity opposite to the laser propagating direction. Two types of standing solitons with zero group velocity are found at the given electrons' initial velocities. One is single-humped with a weakly relativistic intensity; the another is multi-humped with a strong relativistic amplitude. The properties of these two types of solitons are presented in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 10335020).
文摘A set of exact one-dlmensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.
基金This work is supported by the National High-Tech 863 Project the Optimum Science Research Program of the Shanghai Branch the Chinese Academy of Sciences.
文摘The spectrum of harmonics generated and propagated in ionized noble gas has been analyzed using one-dimensional wave propagation equation. The result shows that the spectral lines of harmonic become broadened and then split into two peaks when the laser intensity is strong enough to ionize the noble gas. The influence of laser parameters and gas pressure on the splitting has been made clear.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204222)the Natural Science Foundation of Hubei Province,China(Grant Nos.2013CFB316 and 2014CFB793)
文摘We theoretically investigate the quantum path selection in an ultraviolet (UV)-assisted near-infrared field with an UV energy below the ionization threshold. By calculating the ionization probability with different assistant UV frequencies, we find that a resonance-enhanced ionization peak emerges in the region Euv 〈 Ip, where Euv is the photon energy and Ip is the ionization energy. With an attosecond pulse train (APT) centered in the resonance region, we show that the short quantum path can be well selected in the continuum case. By performing the electron trajectory analysis, we have further explained the physical mechanism of the quantum path selection. Moreover, we also demonstrate that in the resonance region, the harmonic emission from the selected paths is more efficient than that with the APT energy above the ionization threshold.
基金supported by the National Natural Science Foundation of China(Nos.61178024 and 11374316)the National Basic Research Program of China(No.2011CB808103)Q.Zhao acknowledges research funding from the Shanghai Pujiang Program(No.10PJ1410600)
文摘Anisotropic dewetting polydimethylsiloxane (PDMS) surfaces, which consist of groove-like micro/ nanostructures (so-called hierarchical structures), are fabricated using an ultrashort pulsed laser. The contact angles (CAs) are measured parallel to the microgrooves, which are always larger than those measured perpendicular to the microgrooves, exhibiting a superhydrophobic anisotropy of approximately 4°on these fabricated PDMS surfaces at optimized parameters. These pulsed-laser irradiated surfaces exhibit enhanced hydrophobicity with CAs that increase from 116°to 156°while preserving the anisotropic dewetting. Additionally, the wettability of the surfaces with different morphologies is investigated. The temporal evolution of the wettability of the pulsed-laser irradiated PDMS surface is also observed within the first few hours after pulsed laser irradiation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11502085)the Natural Science Foundation of Hubei Province,China(Grant No.2016CFB542)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2016YXMS097)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(NUAA),China(Grant No.0315K01)
文摘The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology(large or small ballistic range).In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source.
基金support by a project‘ReSoft’(SEN-13/2015)from the Research Council of Lithuaniasupport by JSPS Kakenhi Grant No.15K04637+1 种基金support via ARC Discovery DP120102980Gintas Šlekys for the partnership project with Altechna Ltd on industrial fs-laser fabrication.
文摘Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific,technological and industrial potential.In ultrafast laser manufacturing,optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions.Control of photoionization and thermal processes with the highest precision,inducing local photomodification in sub-100-nm-sized regions has been achieved.State-of-the-art ultrashort laser processing techniques exploit high 0.1–1μm spatial resolution and almost unrestricted three-dimensional structuring capability.Adjustable pulse duration,spatiotemporal chirp,phase front tilt and polarization allow control of photomodification via uniquely wide parameter space.Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second,leading to a fast lab-to-fab transfer.The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput.Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Foundation of China(Grants Nos.11834004,61690224,and 11761141004)+6 种基金the 111 Project of China(Grant No.B12024)the Projects from Shanghai Science and Technology Commission(No.19JC1412200)ISF-NSFC joint research program(Grant No.2520/17),CNRSthe ERDF Operational Program-Burgundythe EIPHI Graduate School(Contract No.ANR-17-EURE-0002)the Associate(CNRS&Weizmann)International ImagiNano LaboratoryIsrael Science Foundation(Grant No.746/15).
文摘Molecular alignment and orientation by laser fields has attracted significant attention in recent years,mostly due to new capabilities to manipulate the molecular spatial arrangement.Molecules can now be efficiently prepared for ionization,structural imaging,orbital tomography,and more,enabling,for example,shooting of dynamic molecular movies.Furthermore,molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals,Anderson localization,and rotational echoes,just to mention a few.We review recent progress on the visualization,coherent control,and applications of the rich dynamics of molecular rotational wave packets driven by laser pulses of various intensities,durations,and polarizations.In particular,we focus on the molecular unidirectional rotation and its visualization,the orientation of chiral molecules,and the three-dimensional orientation of asymmetric-top molecules.Rotational echoes are discussed as an example of nontrivial dynamics and detection of prepared molecular states.
基金the DFG in the framework of the Excellence Initiative,Darmstadt Graduate School of Excellence Energy Science and Engineering(GSC 1070)the BMBF(05P19RDFA1)and the Hessian Ministry for Science and the Arts(HMWK)through the LOEWE Research Cluster Nuclear Photonics at TU Darmstadt.
文摘Targets with microstructured front surfaces have shown great potential in improving high-intensity laser–matter interaction.We present cone-shaped microstructures made out of silicon and titanium created by ultrashort laser pulse processing with different characteristics.In addition,we illustrate a process chain based on moulding to recreate the laser-processed samples out of polydimethylsiloxane,polystyrol and copper.With all described methods,samples of large sizes can be manufactured,therefore allowing time-efficient,cost-reduced and reliable ways to fabricate large quantities of identical targets.
基金support from the EU’s Horizon 2020 research and innovation programme through the project ‘EuPRAXIA’(grant agreement No.653782)from the Italian Ministry of Education,University and Research(MIUR)through the PRIN project‘Preclinical Tool for Advanced Translational Research with Ultrashort and Ultraintense xray Pulses’(prot.20154F48P9)from the MIUR through the research network funding ELI-Italy(‘Attoseconds’)
文摘A study of the structure of the electric and magnetic fields of ultraintense laser pulses focused by an off-axis parabolic mirror is reported. At first, a theoretical model is laid out, whose final equations integration allows the space and time structure of the fields to be retrieved. The model is then employed to investigate the field patterns at different times within the optical cycle, for off-axis parabola parameters normally employed in the context of ultraintense laser–plasma interaction experiments. The results show that nontrivial, complex electromagnetic field patterns are observed at the time at which the electric and magnetic fields are supposed to vanish. The importance of this effect is then studied for different laser polarizations, f numbers and off-axis angles.
基金supported by EPSRC (grants:EP/J003832/1,EP/M018091/1,EP/L001357/1,EP/K022415/1 and EP/L000237/1)EPSRC grant EP/G054940/1+2 种基金STFC (grant number ST/K502340/1)the US Air Force Office of Scientific Research (grant:FA8655-13-1-3008)the European Unions Horizon 2020 research and innovation programme (grant agreement No 654148 Laserlab-Europe)
文摘The collective response of electrons in an ultrathin foil target irradiated by an ultraintense(~6×10^(20)W cm^(-2)) laser pulse is investigated experimentally and via 3D particle-in-cell simulations. It is shown that if the target is sufficiently thin that the laser induces significant radiation pressure, but not thin enough to become relativistically transparent to the laser light, the resulting relativistic electron beam is elliptical, with the major axis of the ellipse directed along the laser polarization axis. When the target thickness is decreased such that it becomes relativistically transparent early in the interaction with the laser pulse, diffraction of the transmitted laser light occurs through a so called ‘relativistic plasma aperture', inducing structure in the spatial-intensity profile of the beam of energetic electrons. It is shown that the electron beam profile can be modified by variation of the target thickness and degree of ellipticity in the laser polarization.
基金funded by the Russian Science Foundation(No.22-79-10068)。
文摘An exceptionally high stimulated Raman scattering[SRS]conversion efficiency to the first Stokes component associated with the secondary[low-frequency and low intensity]vibrational mode v2[~330 cm^[-1]]was observed in a BaWO4 crystal in a highly transient regime of interaction.The effect takes place in the range of pump pulse energy from~0.1 to~0.5μJ with maximum energy conversion efficiency up to 35%at 0.2μJ.The nature of the observed effects is explained by interference of SRS and self-phase modulation,where the latter is related to a noninstantaneous orientational Kerr nonlinearity in the BaWO4 crystal.
文摘The interaction of ultra-intense high-power lasers with solid-state targets has been largely studied for the past 20 years as a future compact proton and ion source.Indeed,the huge potential established on the target surface by the escaping electrons provides accelerating gradients of TV/m.This process,called target normal sheath acceleration,involves a large number of phenomena and is very difficult to study because of the picosecond scale dynamics.At the SPARC LAB Test Facility,the high-power laser FLAME is employed in experiments with solid targets,aiming to study possible correlations between ballistic fast electrons and accelerated protons.In detail,we have installed in the interaction chamber two different diagnostics,each one devoted to characterizing one beam.The first relies on electro-optic sampling,and it has been adopted to completely characterize the ultrafast electron components.On the other hand,a time-of-flight detector,based on chemical-vapour-deposited diamond,has allowed us to retrieve the proton energy spectrum.In this work,we report preliminary studies about simultaneous temporal resolved measurements of both the first forerunner escaping electrons and the accelerated protons for different laser parameters.