An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to...An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.展开更多
Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for ev...Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation(SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.展开更多
A novel linear ultrasonic motor based on d15 effect of piezoelectric materials was presented. The design idea aimed at the direct utilization of the shear-induced vibration modes of piezoelectric material. Firstly, th...A novel linear ultrasonic motor based on d15 effect of piezoelectric materials was presented. The design idea aimed at the direct utilization of the shear-induced vibration modes of piezoelectric material. Firstly, the inherent electromechanical coupling mechanism of piezoelectric material was investigated, and shear vibration modes of a piezoelectric shear block was specially designed. A driving point’s elliptical trajectory induced by shear vibration modes was discussed. Then a dynamic model for the piezoelectric shear stator was established with finite element(FE) method to conduct the parametric optimal design. Finally, a prototype based on d15 converse piezoelectric effect is manufactured, and the modal experiment of piezoelectric stator was conducted with laser doppler vibrometer. The experimental results show that the calculated shear-induced vibration modes can be excited completely, and the new linear ultrasonic motor reaches a speed 118 mm/s at noload, and maximal thrust 12.8 N.展开更多
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed....In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.展开更多
The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, thei...The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.展开更多
The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the...The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the specimens, their frequency dependences of longitudinal velocities were measured in the frequency range 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoretical expression. For the frequency dependences of longitudinal velocities, the measurement results were in good agreement with the simulation ones in which the phase advances were included. It has been shown that the velocity error due to diffraction effect can be corrected very well by this method.展开更多
Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were m...Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were measured and analyzed. Results show that when the welding vibration amplitude and pressure increase, the temperature increases, the viscosity decreases, and the thickness of molten layer decreases. The microstructure of weld fusion zone was observed by using an optical microscope. It was found that there is strong orientation along transverse direction in the microstructure of fusion zone. Testing results show that the mechanics performance of welded joints are obviously anisotropic, and strongly affected by the thickness of molten layer and the extent of orientation.展开更多
Ultrasonication(US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonicat...Ultrasonication(US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonication disintegration of sludge as a consequence.The objective of this work is to present an extensive review of evaluation approaches of sludge US pretreatment efficiency. Besides, optimization methodologies of related parameters,the differences of optimum values and the similarities of affecting trends on cavitation and sludge pretreatment efficiency were specifically pointed out, including ambient conditions,ultrasonic properties, and sludge characteristics. The research is a prerequisite for optimization of sludge US pretreatment efficiency in lab-scale and practical application. There is not-yet a comprehensive method to evaluate the efficiency of sludge US pretreatment, but some main parameters commonly used for this purpose are degree of sludge disintegration, proteins,particle size reduction, etc. Regarding US parameters, power input PUS, intensity IUS, and frequency FSseem to have significant effects. However, the magnitude of the effect of PUSand probe size in terms of IUShas not been clearly detailed. Investigating very low FSseems interesting but has not yet been taken into consideration. In addition, static pressure effect has been marginally studied only and investigation on the effect of pH prior to US process has been restricted. Their effects therefore should be varied separately and simultaneously with other related parameters, i.e. process conditions, ultrasonic properties, and sludge characteristics, to optimize sludge US pretreatment process.展开更多
基金supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission,China (No.2009BB4186)
文摘An investigation on the plastic behavior of AZ31 magnesium alloy under ultrasonic vibration(with a frequency of 15 kHz and a maximum output of 2 kW) during the process of tension at room temperature was conducted to reveal the volume effect of the vibrated plastic deformation of AZ31.The characteristics of mechanical properties and microstructures of AZ31 under routine and vibrated tensile processes with different amplitudes were compared.It is found that ultrasonic vibration has a remarkable influence on the plastic behavior of AZ31 which can be summarized into two opposite aspects:the softening effect which reduces the flow resistance and improves the plasticity,and the hardening effect which decreases the formability.When a lower amplitude or vibration energy is applied to the tensile sample,the softening effect dominates,leading to a decrease of AZ31 deformation resistance with an increase of formability.Under the application of a high-vibrating amplitude,the hardening effect dominates,resulting in the decline of plasticity and brittle fracture of the samples.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
基金Project supported by National Natural Science Foundation of China(Grant Nos.11474361,51405405,and 11622430)
文摘Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation(SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.
基金Funded by the National Basic Research Program of China(973 Program,No.2015CB057501)the National Natural Science Foundation of China(Nos.50975135,51275235)+1 种基金the Fundamental Research Funds for the Central Universities(No.NJ20140024)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A novel linear ultrasonic motor based on d15 effect of piezoelectric materials was presented. The design idea aimed at the direct utilization of the shear-induced vibration modes of piezoelectric material. Firstly, the inherent electromechanical coupling mechanism of piezoelectric material was investigated, and shear vibration modes of a piezoelectric shear block was specially designed. A driving point’s elliptical trajectory induced by shear vibration modes was discussed. Then a dynamic model for the piezoelectric shear stator was established with finite element(FE) method to conduct the parametric optimal design. Finally, a prototype based on d15 converse piezoelectric effect is manufactured, and the modal experiment of piezoelectric stator was conducted with laser doppler vibrometer. The experimental results show that the calculated shear-induced vibration modes can be excited completely, and the new linear ultrasonic motor reaches a speed 118 mm/s at noload, and maximal thrust 12.8 N.
基金supported by the National Natural Science Foundation of China(11174060,11327405)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)+1 种基金the Science and Technology Support Program of Shanghai(13441901900)the Program for New Century Excellent Talents in University(NCET-10-0349)
文摘In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.
文摘The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.
文摘The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the specimens, their frequency dependences of longitudinal velocities were measured in the frequency range 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoretical expression. For the frequency dependences of longitudinal velocities, the measurement results were in good agreement with the simulation ones in which the phase advances were included. It has been shown that the velocity error due to diffraction effect can be corrected very well by this method.
基金the National Natural Science Foundation of China (No.59675054) andNational Key Laboratory of Advanced Welding Production Techn
文摘Effects of molten state of ultrasonic welded joints of plastics on their strength were investigated. Physical parameters such as temperature, viscosity and thickness of melting layers of plastic material joints were measured and analyzed. Results show that when the welding vibration amplitude and pressure increase, the temperature increases, the viscosity decreases, and the thickness of molten layer decreases. The microstructure of weld fusion zone was observed by using an optical microscope. It was found that there is strong orientation along transverse direction in the microstructure of fusion zone. Testing results show that the mechanics performance of welded joints are obviously anisotropic, and strongly affected by the thickness of molten layer and the extent of orientation.
基金financial support from the Ministry of Education and Training of Vietnam and Institut National Polytechnique of Toulouse (France)
文摘Ultrasonication(US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonication disintegration of sludge as a consequence.The objective of this work is to present an extensive review of evaluation approaches of sludge US pretreatment efficiency. Besides, optimization methodologies of related parameters,the differences of optimum values and the similarities of affecting trends on cavitation and sludge pretreatment efficiency were specifically pointed out, including ambient conditions,ultrasonic properties, and sludge characteristics. The research is a prerequisite for optimization of sludge US pretreatment efficiency in lab-scale and practical application. There is not-yet a comprehensive method to evaluate the efficiency of sludge US pretreatment, but some main parameters commonly used for this purpose are degree of sludge disintegration, proteins,particle size reduction, etc. Regarding US parameters, power input PUS, intensity IUS, and frequency FSseem to have significant effects. However, the magnitude of the effect of PUSand probe size in terms of IUShas not been clearly detailed. Investigating very low FSseems interesting but has not yet been taken into consideration. In addition, static pressure effect has been marginally studied only and investigation on the effect of pH prior to US process has been restricted. Their effects therefore should be varied separately and simultaneously with other related parameters, i.e. process conditions, ultrasonic properties, and sludge characteristics, to optimize sludge US pretreatment process.