A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke...A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.展开更多
The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using ...The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using an independent coupler. The elliptical locus observed on the longitudinal-torslonal vibration converter with oblique slits is analyzed by using vibration theory. A method for the modal conversion is proposed by using the local mode of a substructure On a main structure. The method can be used to design the modal conversion type ultrasonic motors.展开更多
A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin underg...A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved.Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing,aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
This study fabricated textures on the stator surface of a traveling wave ultrasonic motor(USM)using laser and investigated the tribological behavior of a polytetrafluoroethylene(PTFE)composite friction material and st...This study fabricated textures on the stator surface of a traveling wave ultrasonic motor(USM)using laser and investigated the tribological behavior of a polytetrafluoroethylene(PTFE)composite friction material and stator.Initially,the effect of textures with different densities was tested.As the results suggested,the generation of large transfer films of PTFE composite was prevented by laser surface texturing,and adhesive wear reduced notably despite the insignificant decrease in load capacity and efficiency.Next,the 100-h test was performed to further study the effects of texture.Worn surface and wear debris were observed to discuss wear mechanisms.After 100 h,the form of wear debris changed into particles.The wear mechanisms of friction material sliding against the textured stator were small size fatigue and slight abrasive wear.The wear height of friction material decreased from 3.8μm to 1.1μm.This research provides a method to reduce the wear of friction materials used in travelling wave USMs.展开更多
The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Moti...The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.展开更多
A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshape...A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshaped ultrasonic motor is simulated. The stator structure and the position to lay these piezoelectric ceramics are calculated to improve the electro mechanical conversion efficiency. A flexible rotor is designed to reduce the radial slip between the stator and the rotor, and to improve the motor efficiency. The prototype motor and its micror driver are tested. The motor is 9 mm in out-diameter, 15 mm in length and 3.2 g in weight. When the motor operates with the first bending frequency (72 kHz) of the stator, its maximal rotational speed and the torque reach 520 r/rain and 4.5 mN · m. Results show that the motor has good stability. The speed fluctuation is controlled within 3% by the frequency automatic tracking technique.展开更多
A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction a...A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.展开更多
A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajec...A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.展开更多
A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference valu...A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.展开更多
The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principl...The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.展开更多
A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the...A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the stator by three groups of piezoelectric ceramic elements. The combinations of any one bending mode and the longitudinal mode mentioned above push the slider to move linearly in direction x or y. Some key issues for improving the motor output properties and efficiency are given. They include selection of the vibration modes, consistency of the modal frequencies, placement of the piezoelectric ceramic elements and the supporting plane, setting of pre-pressure, and influence of interfering modes.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-...The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.展开更多
Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which...Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which required lubricant. To solve the above problem, a bearingless travelling-wave USM is designed. First, a novel structure of the two-sided USM consisting of a two-sided teeth stator and two disk-type rotors is designed. And the excitation principle of the two-sided travelling-wave USM is analyzed. Then, using ANSYS software, we set up the model of the stator to predict the excitation frequency and modal response of the stator. The shape of the vibration mode was obtained. Last, the load characteristics of the USM are measured using ex-perimental method. The maximum stall torque and the no-load speed were obtained. The results showed that the characteristics of the two-sided USM are better than those of the conventional one-sided USM.展开更多
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character...A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.展开更多
Existing rotary ultrasonic motors operating in extreme environments cannot meet the requirements of good environmental adaptability and compact structure at same time,and existing ultrasonic motors with Langevin trans...Existing rotary ultrasonic motors operating in extreme environments cannot meet the requirements of good environmental adaptability and compact structure at same time,and existing ultrasonic motors with Langevin transducers show better environmental adaptability,but size of these motors are usually big due to the radial arrangement of the Langevin transducers.A novel dual driving face rotary ultrasonic motor is proposed,and its working principle is experimentally verified.The working principle of the novel ultrasonic motor is firstly proposed.The 5th in-plane flexural vibration travelling wave,excited by the Langevin transducers around the stator ring,is used to drive the rotors.Then the finite element method is used in the determination of dimensions of the prototype motor,and the confirmation of its working principle.After that,a laser Doppler vibrometer system is used for measuring the resonance frequency and vibration amplitude of the stator.At last,output characteristics of the prototype motor are measured,environmental adaptability is tested and performance for driving a metal ball is also investigated.At room temperature and 200 V(zero to peak) driving voltage,the motor’s no-load speed is 80 r/min,the stalling torque is 0.35 N·m and the maximum output power is 0.85 W.The response time of this motor is 0.96 ms at the room temperature,and it decreases or increases little in cold environment.A metal ball driven by the motor can rotate at 210 r/min with the driving voltage 300 V(zero to peak).Results indicate that the prototype motor has a large output torque and good environmental adaptability.A rotary ultrasonic motor owning compact structure and good environmental adaptability is proposed,and lays the foundations of ultrasonic motors’ applications in extreme environments.展开更多
A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It ...A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.展开更多
A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality an...A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.展开更多
An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant fre...An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant frequency are discussed theoretically. According to the feature that impulse exists between the elastic body of composite ultrasonic linear motor and the base, an impulse analysis is presented to calculate the motor′s friction driving force and frictional conversion efficiency. The impulse analysis essentially explains the reason why the ultrasonic motor has great driving force, and can be applied to analyze the non-linear ultrasonic motor.展开更多
基金the National Natural Science Foundation of China (50735002)~~
文摘A two degrees of freedom (DOF) positioning stage using novel linear ultrasonic motors is presented. The stage mainly consists of two linear ultrasonic motors, linear guides and tables. It can realize the long stroke and reversible controlled motion in two directions. The wheel-shape linear ultrasonic motor applied in the stage utilizes two fourth-bending modes of non-uniform beam in orthogonal directions. Quick response, no backlash, high resolution, power-off self-braking, and long stroke are the attractive characteristics of the linear positioning stage. Experimental results show that z and y-direction tables can reach the destination without overshoot and the error is less than 2μm by using two linear encoders with a resolution of 1 μm. In the open-loop mode, the positioning stage achieves 1μm resolution at 0. 25 ms driving time.
基金Supported by the National Natural Science Foundation of China(10874090,50775109)the Jiangsu Provincial High-Tech Project of China(BG2006005)~~
文摘The forming of elliptic motions on the modal conversion ultrasonic motors (MCUMs) is discussed. The principles of the modal conversion are investigated based on the coupling with the stator and the rotor, and using an independent coupler. The elliptical locus observed on the longitudinal-torslonal vibration converter with oblique slits is analyzed by using vibration theory. A method for the modal conversion is proposed by using the local mode of a substructure On a main structure. The method can be used to design the modal conversion type ultrasonic motors.
基金supported by the National Natural Science Foundation of China(Nos.50905085,91116020)the Aviation Science Foundation of China(No.20100112005)
文摘A novel variable camber wing driven by ultrasonic motors is proposed.Key techniques of distributed layout of drive mechanisms,coordination control of distributed ultrasonic motors as well as novel flexible skin undergoing one-dimensional morphing are studied.The system integration of small variable camber wing is achieved.Distributed layout of parallelogram linkages driven by geared ultrasonic motors is adopted for morphing,aimed at reducing the load for each motor and producing various aerodynamic configurations suitable for different flying states.Programmable system-on-chip(PSoC)is used to realize the coordination control of the distributed ultrasonic motors.All the morphing driving systems are assembled in the interior of the wing.The wing surface is covered with a novel smooth flexible skin in order to maintain wing shape and decrease the aerodynamic drag during morphing.Wind tunnel test shows that the variable camber wing can realize morphing under low speed flight condition.Lift and drag characteristics and aerodynamic efficiency of the wing are improved.Appropriate configurations can be selected to satisfy aerodynamic requirements of different flight conditions.The study provides a practical application of piezoelectric precision driving technology in flow control.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金Natural Science Foundation of Zhejiang Province(No.LQ18E050002)Natural Science Foundation of Ningbo(No.2017A610076)Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms(No.BZ0388201702)for providing research funds and this study was sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘This study fabricated textures on the stator surface of a traveling wave ultrasonic motor(USM)using laser and investigated the tribological behavior of a polytetrafluoroethylene(PTFE)composite friction material and stator.Initially,the effect of textures with different densities was tested.As the results suggested,the generation of large transfer films of PTFE composite was prevented by laser surface texturing,and adhesive wear reduced notably despite the insignificant decrease in load capacity and efficiency.Next,the 100-h test was performed to further study the effects of texture.Worn surface and wear debris were observed to discuss wear mechanisms.After 100 h,the form of wear debris changed into particles.The wear mechanisms of friction material sliding against the textured stator were small size fatigue and slight abrasive wear.The wear height of friction material decreased from 3.8μm to 1.1μm.This research provides a method to reduce the wear of friction materials used in travelling wave USMs.
基金Supported by the National Natural Science Foundation of China(50575103, 50735002)~~
文摘The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.
文摘A new rod-shaped traveling wave ultrasonic micromotor is developed. In the micromotor, five pieces of piezoelectric ceramics clamped by two metal cylinders are used as its stator. The driving principle of the rodshaped ultrasonic motor is simulated. The stator structure and the position to lay these piezoelectric ceramics are calculated to improve the electro mechanical conversion efficiency. A flexible rotor is designed to reduce the radial slip between the stator and the rotor, and to improve the motor efficiency. The prototype motor and its micror driver are tested. The motor is 9 mm in out-diameter, 15 mm in length and 3.2 g in weight. When the motor operates with the first bending frequency (72 kHz) of the stator, its maximal rotational speed and the torque reach 520 r/rain and 4.5 mN · m. Results show that the motor has good stability. The speed fluctuation is controlled within 3% by the frequency automatic tracking technique.
文摘A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.
基金Supported by the National Natural Science Foundation of China(50735002)~~
文摘A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.
文摘A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.
文摘The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.
文摘A two-degree-of-freedom(2-DOF) linear ultrasonic motor (USM) consists of a cylinder-shaped stator and a slider. Two bending vibration modes with orthogonality and one longitudinal vibration mode are excited in the stator by three groups of piezoelectric ceramic elements. The combinations of any one bending mode and the longitudinal mode mentioned above push the slider to move linearly in direction x or y. Some key issues for improving the motor output properties and efficiency are given. They include selection of the vibration modes, consistency of the modal frequencies, placement of the piezoelectric ceramic elements and the supporting plane, setting of pre-pressure, and influence of interfering modes.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
基金Project supported by the National Natural Science Foundation of China (No. 60572055)the Natural Science Foundation of Guangxi Province (No. 0339068), China
文摘The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.
基金Project (No. 50175018) supported by the National Natural ScienceFoundation of China
文摘Applications are limited at present because the currently available ultrasonic motors (USMs) do not provide suffi-ciently high torque and power. The conventional travelling-wave USM needs the bearing to support, which required lubricant. To solve the above problem, a bearingless travelling-wave USM is designed. First, a novel structure of the two-sided USM consisting of a two-sided teeth stator and two disk-type rotors is designed. And the excitation principle of the two-sided travelling-wave USM is analyzed. Then, using ANSYS software, we set up the model of the stator to predict the excitation frequency and modal response of the stator. The shape of the vibration mode was obtained. Last, the load characteristics of the USM are measured using ex-perimental method. The maximum stall torque and the no-load speed were obtained. The results showed that the characteristics of the two-sided USM are better than those of the conventional one-sided USM.
基金Funded by the National Basic Research Program (973 program) (No. 2011CB707602)the Digital Manufacturing Equipment and Technology National Key Laboratory,Huazhong University of Science and Technology (No. DMETKF2009002)National Sciences Foundation-Guangdong Natural Science Foundation,China (No.U0934004)
文摘A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.
基金supported by National Natural Science Foundation of China(Grant Nos.5120520351275228+7 种基金5107521291123020)Science and Research FoudotionNanjing University of Aeronautics and Astronautics(Grant Nos.56YAH12015NZ2010002S0896-013)Innovation and Entrepreneurship Program of Jiangsuand Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Existing rotary ultrasonic motors operating in extreme environments cannot meet the requirements of good environmental adaptability and compact structure at same time,and existing ultrasonic motors with Langevin transducers show better environmental adaptability,but size of these motors are usually big due to the radial arrangement of the Langevin transducers.A novel dual driving face rotary ultrasonic motor is proposed,and its working principle is experimentally verified.The working principle of the novel ultrasonic motor is firstly proposed.The 5th in-plane flexural vibration travelling wave,excited by the Langevin transducers around the stator ring,is used to drive the rotors.Then the finite element method is used in the determination of dimensions of the prototype motor,and the confirmation of its working principle.After that,a laser Doppler vibrometer system is used for measuring the resonance frequency and vibration amplitude of the stator.At last,output characteristics of the prototype motor are measured,environmental adaptability is tested and performance for driving a metal ball is also investigated.At room temperature and 200 V(zero to peak) driving voltage,the motor’s no-load speed is 80 r/min,the stalling torque is 0.35 N·m and the maximum output power is 0.85 W.The response time of this motor is 0.96 ms at the room temperature,and it decreases or increases little in cold environment.A metal ball driven by the motor can rotate at 210 r/min with the driving voltage 300 V(zero to peak).Results indicate that the prototype motor has a large output torque and good environmental adaptability.A rotary ultrasonic motor owning compact structure and good environmental adaptability is proposed,and lays the foundations of ultrasonic motors’ applications in extreme environments.
基金Funded by the National Natural Sciences Foundation of China (No.10874090)Jiangsu Provincial High-Tech Project of China (No.BG2006005)
文摘A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.
文摘A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.
文摘An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant frequency are discussed theoretically. According to the feature that impulse exists between the elastic body of composite ultrasonic linear motor and the base, an impulse analysis is presented to calculate the motor′s friction driving force and frictional conversion efficiency. The impulse analysis essentially explains the reason why the ultrasonic motor has great driving force, and can be applied to analyze the non-linear ultrasonic motor.