In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and ...In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and 60 N provided a severe plastic deformation, which produced a gradient structure. The nearsurface area exhibited a high number of dislocation densities and deformation twin interaction, leading to a surface strengthening and hardness improvement of up to 112% than the deformation-free interior region. Increment of dislocation densities and deformation twin formation on the surface also enhanced the yield and ultimate tensile strength of the UNSM-treated specimens. Furthermore, the combination of hard nanocrystallites layer on the surface and ductile coarse grain in the specimen interior as a result of the UNSM treatment successfully maintained the strength–ductility balance of the CoCrFeMnNi.展开更多
Ultrasonic nanocrystal surface modification (UNSM) treatment on non-equiatomic medium-and highentropy alloy (HEA) of Fex(CoCrMnNi)100-xis firstly introduced and its impact on microstructure and mechanical properties a...Ultrasonic nanocrystal surface modification (UNSM) treatment on non-equiatomic medium-and highentropy alloy (HEA) of Fex(CoCrMnNi)100-xis firstly introduced and its impact on microstructure and mechanical properties are revealed.By UNSM,severe plastic deformation-induced dislocation and deformation twins (DTs) arise at the topmost surface.Especially,Fe60(CoCrMnNi)40(Fe60),which is classified as a medium-entropy alloy (MEA),exhibits ε-martensitic transformation.In the room temperature tensile test,a high strength of ~600 MPa and ductility of ~65%elongation (strain to failure) is accomplished in Fe60.Initially formed DTs and ε-martensitic transformation by UNSM treatment plays a key role in retardation of necking point via both twinning-induced plasticity and transformation-induced plasticity.However,Fe20(CoCrMnNi)80(Fe20) comparatively shows low strength of ~550 MPa and ~40% elongation,owing to the low accommodation of DTs than Fe60.Our research will provide new guidelines for enhancing the mechanical properties of MEA and HEA.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number NRF2019R1A2C1088535)supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICTFuture Planning (Grant number 2009-0082580)。
文摘In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and 60 N provided a severe plastic deformation, which produced a gradient structure. The nearsurface area exhibited a high number of dislocation densities and deformation twin interaction, leading to a surface strengthening and hardness improvement of up to 112% than the deformation-free interior region. Increment of dislocation densities and deformation twin formation on the surface also enhanced the yield and ultimate tensile strength of the UNSM-treated specimens. Furthermore, the combination of hard nanocrystallites layer on the surface and ductile coarse grain in the specimen interior as a result of the UNSM treatment successfully maintained the strength–ductility balance of the CoCrFeMnNi.
基金financially supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2019R1A2C1088535)supported by the Nano Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(No.2009-0082580)。
文摘Ultrasonic nanocrystal surface modification (UNSM) treatment on non-equiatomic medium-and highentropy alloy (HEA) of Fex(CoCrMnNi)100-xis firstly introduced and its impact on microstructure and mechanical properties are revealed.By UNSM,severe plastic deformation-induced dislocation and deformation twins (DTs) arise at the topmost surface.Especially,Fe60(CoCrMnNi)40(Fe60),which is classified as a medium-entropy alloy (MEA),exhibits ε-martensitic transformation.In the room temperature tensile test,a high strength of ~600 MPa and ductility of ~65%elongation (strain to failure) is accomplished in Fe60.Initially formed DTs and ε-martensitic transformation by UNSM treatment plays a key role in retardation of necking point via both twinning-induced plasticity and transformation-induced plasticity.However,Fe20(CoCrMnNi)80(Fe20) comparatively shows low strength of ~550 MPa and ~40% elongation,owing to the low accommodation of DTs than Fe60.Our research will provide new guidelines for enhancing the mechanical properties of MEA and HEA.