Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make ...Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.展开更多
离轴非球面反射镜是高分辨率、大视场空间相机的核心元件,其镜面的形状精度和表面质量要求极高,加工难度很大,一直是光学系统先进制造技术的瓶颈。针对国家对空间大型SiC光学元件制造技术的重大需求,开展以大口径、高陡度、大离轴量和...离轴非球面反射镜是高分辨率、大视场空间相机的核心元件,其镜面的形状精度和表面质量要求极高,加工难度很大,一直是光学系统先进制造技术的瓶颈。针对国家对空间大型SiC光学元件制造技术的重大需求,开展以大口径、高陡度、大离轴量和大偏离量为特点的离轴非球面反射镜的精密铣磨加工技术研究。开发非球面反射镜计算机辅助数控编程技术,提出五轴联动斜轴定角度加工方式,建立旋转中心在镜面外的螺旋加工轨迹,避免镜面几何中心处的加工残留。并基于五轴加工中心(型号DMG Ultrasonic 100-5)搭建超声振动辅助铣磨加工平台,以900 mm×660 mm口径离轴非球面SiC反射镜镜坯为加工样件进行工艺试验,加工面形精度峰谷值(Peak to valley,PV)达到18.8μm,方均根值(Root mean square,RMS)达到3.5μm。研究为按照非球面方程高精度铣磨超大尺度精度比离轴非球面反射镜提供了有效的解决方案。展开更多
基金the Australian Research Council for its financial support to this work
文摘Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.
文摘离轴非球面反射镜是高分辨率、大视场空间相机的核心元件,其镜面的形状精度和表面质量要求极高,加工难度很大,一直是光学系统先进制造技术的瓶颈。针对国家对空间大型SiC光学元件制造技术的重大需求,开展以大口径、高陡度、大离轴量和大偏离量为特点的离轴非球面反射镜的精密铣磨加工技术研究。开发非球面反射镜计算机辅助数控编程技术,提出五轴联动斜轴定角度加工方式,建立旋转中心在镜面外的螺旋加工轨迹,避免镜面几何中心处的加工残留。并基于五轴加工中心(型号DMG Ultrasonic 100-5)搭建超声振动辅助铣磨加工平台,以900 mm×660 mm口径离轴非球面SiC反射镜镜坯为加工样件进行工艺试验,加工面形精度峰谷值(Peak to valley,PV)达到18.8μm,方均根值(Root mean square,RMS)达到3.5μm。研究为按照非球面方程高精度铣磨超大尺度精度比离轴非球面反射镜提供了有效的解决方案。