期刊文献+
共找到534篇文章
< 1 2 27 >
每页显示 20 50 100
Theoretical Modeling and Surface Roughness Prediction of Microtextured Surfaces in Ultrasonic Vibration-Assisted Milling
1
作者 Chenbing Ni Junjie Zhu +3 位作者 Youqiang Wang Dejian Liu Xuezhao Wang Lida Zhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期163-183,共21页
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te... Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM. 展开更多
关键词 Theoretical modeling Microtextured surface ultrasonic vibration-assisted milling Cubic spline interpolation Surface roughness
下载PDF
Research on the Influence of Cutting Condition on the Surface Microstruct ure of Ultra-thin Wall Parts in Ultrasonic Vibration Cutting 被引量:9
2
作者 GAO Guo-fu, ZHAO Bo, JIAO Feng, LIU Chuan-shao (Department of Mechanical Engineering, Jiaozuo Institute of Technolog y, Henan 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期69-70,共2页
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras... In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce. 展开更多
关键词 ultra-thin wall parts ultrasonic cutting PCD t ool microstructure surface roughness
下载PDF
On-line measurement of electrical variables of the transducer during ultrasonic welding and cutting
3
作者 闫久春 刘井权 杨士勤 《China Welding》 EI CAS 2002年第2期133-137,共5页
A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage... A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz . 展开更多
关键词 ultrasonic welding ultrasonic cutting on line measurement electrical variables
下载PDF
Ultrasonically Assisted Cutting of Histological Sections for Reducing the Environmental and Financial Impact of Microtomy
4
作者 Dong Wang Daniel De Becker Anish Roy 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期200-206,共7页
Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections ... Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections is dependent on the blade wear,which is related to the hardness of the tissue sample,cutting angle and cutting speed.A test rig has been designed and manufactured to allow these parameters to be controlled.This has allowed for the blade wear to be analysed and quantified,and this has been completed for both ultrasonically assisted and conventional cutting.The obtained results showed a 25.2%decrease in average blade roughness after 38 cuts when using the ultrasonically assisted cutting regime.The data also showed no adverse effect on the quality of the slides produced when using this cutting methodology.Finally,the cutting force measured for both cutting regimes showed that ultrasonically assisted cutting required less force compared to conventional cutting.With the reduction of surface roughness and force,it is possible to state that ultrasonically assisted cutting reduces the wear of the blade,thereby increasing the life of the blades.An increase of just 10%in blade life would yield a cost saving of approximately 25%thereby reducing the environmental and financial impact of microtomy. 展开更多
关键词 Microtome ultrasonically assisted cutting Blade wear
下载PDF
Microstructure Transformation and Refinement Mechanism of Undercooled Cu-Ni-Co Alloy Based on Simulation of Critical Cutting Speed in Ultrasonic Machining
5
作者 HE Xiaoyu HOU Kai +2 位作者 XU Xuguang TANG Cheng ZHU Xijing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1472-1483,共12页
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o... Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality. 展开更多
关键词 rapid solidification UNDERCOOLING microstructure refinement structure ultrasonic elliptical vibration turning cutting speed finite element analysis
下载PDF
Force Modeling for Ultrasonic-assisted Wire Saw Cutting SiC Monocryatal Wafers 被引量:1
6
作者 ZHANG Jie LI Shujuan Liu Yong 《International Journal of Plant Engineering and Management》 2011年第4期225-236,共12页
The advantages, such as a small cutting force, narrow kerf and little material waste make wire saw cut- ting suitable for machining precious materials like SiC, Si monocrystal and a variety of gem. As regards wire saw... The advantages, such as a small cutting force, narrow kerf and little material waste make wire saw cut- ting suitable for machining precious materials like SiC, Si monocrystal and a variety of gem. As regards wire saw cutting fo wafer, however, in traditional wire saw cutting process, the cutting efficiency is low, the wear of wire saw is badly, the surface roughness of wafer is poor etc, which have a seriously impact on the cutting process stability and the use of wafers. Ultrasonic-assisted machining method is very suitable for processing a variety of non-conduc- tive hard and brittle materials, glass, ceramics, quartz, silicon, precious stones and diamonds, etc. In this paper, the force model of ultrusonic-assisted wire saw cutting of SiC monocrystal wafer, based on the kinematic and experi- mental analysis were established. The single factor and orthogonal experimental scheme for different processing pa- rameters such as wire saw speed, part rotation speed of and part feed rate, were carried out in traditional wire saw and ultrasonic-assisted wire saw cutting process. The multiple linear regression method is used to establish the static model among the cutting force, processing parameters and ultrasonic vibration parameters, and the model signifi- cance is verified. The results show, as regards ultrasonic-assisted wire saw cutting of SiC monicrystal wafer, both the tangential and normal cutting forces can reduce about 24. 5%-36% and 36. 6%-40%. 展开更多
关键词 wire saw ultrasonic-ASSISTED cutting force MODELING
下载PDF
Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow 被引量:2
7
作者 赵安 韩云峰 +2 位作者 任英玉 翟路生 金宁德 《Applied Geophysics》 SCIE CSCD 2016年第1期179-193,222,共16页
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev... Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut. 展开更多
关键词 Oil-water two-phase flow low mixture velocity high water cut ultrasonic sensor water holdup
下载PDF
Analysis of Machinable Structures and Their Wettability of Rotary Ultrasonic Texturing Method 被引量:7
8
作者 XU Shaolin SHIMADA Keita +1 位作者 MIZUTANI Masayoshi KURIYAGAWA Tsunemoto 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1187-1192,共6页
Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio... Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features. 展开更多
关键词 rotary ultrasonic texturing geometrically defined cutting edges surface generation mechanisms machinable structures wetting properties
下载PDF
Research on the Characters of the Cutting Force in Vibration Cutting Particle Reinforced Metal Matrix Composites SiC_p/Al 被引量:3
9
作者 LIU Chuan-shao 1, ZHAO Bo 1,2, GAO Guo-fu 1, JIAO F eng 1 (1. Department of Mechanical Engineering, Jiaozuo Institute of Techno logy, Henan 454000, China 2. Institute of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期74-75,共2页
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com... In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces. 展开更多
关键词 composite SiC p/Al PCD tool ultrasonic vibrati on turning cutting force
下载PDF
Research on Vibration Cutting Performance of Particle Reinforced Metallic Matrix Composites SiC_p/Al 被引量:1
10
作者 ZHAO Bo 1,2, LIU Chuan-shao 2, ZHU Xun-sheng 1, XU Ke-wei 1 (1. Institute of Mechanical Engineering, Shanghai Jiaotong U niversity, Shanghai 200030, China 2. Department of Mechanical Engineering, Jiaozuo Institute of Technology, Hena n 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期70-71,共2页
The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the p... The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole. 展开更多
关键词 PRMMCs ultrasonic vibration cutting chip deform ation chip shape
下载PDF
Comprehensive modeling approach of axial ultrasonic vibration grinding force 被引量:2
11
作者 何玉辉 周群 +1 位作者 周剑杰 郎献军 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期562-569,共8页
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl... The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified. 展开更多
关键词 cutting deformation force ultrasonic vibration assisted grinding (UVAG) regression equation comprehensive modeling
下载PDF
Analytical model of cutting force in axial ultrasonic vibration-assisted milling in-situ TiB_(2)/7050Al PRMMCs 被引量:1
12
作者 Xiaofen LIU Wenhu WANG +4 位作者 Ruisong JIANG Yifeng XIONG Kunyang LIN Junchen LI Chenwei SHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期160-173,共14页
Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mecha... Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibrationassisted milling metal matrix composites are still needed to be developed.In this paper,an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB_(2)/7050 Al metal matrix composites.During modeling,change of motion of the cutting tool,contact of toolchip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model.Meanwhile,material properties,tool geometry,cutting parameters and vibration parameters were taken into consideration.Furthermore,the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB_(2)/7050 Al metal matrix composites.The predicted cutting forces show to be consistent well with the measured cutting forces.Besides,the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4%to 15.1%.The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB_(2)/7050 Al metal matrix composites,which was proved with general applicability. 展开更多
关键词 Al-MMCs Analytical model cutting force IN-SITU MILLING TiB_(2)particles ultrasonic vibration
原文传递
Research on the New Technology and System of Ultrasonic Honing
13
作者 ZHU Xi-jing 1,2, XU Hong-jun 1, WANG Ai-ling 2, SHENG Xin-quan 2 (1. Nanjing University of Aeronautics and Astronautics, Nanjing 210006, China 2. North China Institute of Technology, Taiyuan 030051, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期66-67,共2页
In recent years, the new technology of ultrasonic vibration cutting has been drawing general attention. And great advancement in theory and applications in production of the technology have been achieved. Ultrasonic v... In recent years, the new technology of ultrasonic vibration cutting has been drawing general attention. And great advancement in theory and applications in production of the technology have been achieved. Ultrasonic vibration honing system developed in North China Institute of Technology and Nanjing University of Aeronautics and Astronautics of cast iron cylinder (47×97) and thin cylinder of 20# (86×95) has been successfully applied to productive experiment and the technological effect obtained is ideal. In comparison with ordinary honing, ultrasonic vibration honing possesses apparent characteristics: Firstly, it has high processing precision (precision in size ranks IT6, roughness Ra0.05, circularty and cylindericity in size ranks IT6); Secondly, it has small cutting force and low temperature so that no deformation occurs; Thirdly, it has high efficiency. In this paper, the application of a new technique to honing is introduced, and the ultrasonic honing systems of thin cylinder and cast cylinder which have been successfully manufactured and their applying effect are illustrated. This paper analyzes the cutting principle of ultrasonic honing in terms of cutting motion, grain performance and cutting quantity. The study of this technique starts a new approach to which is efficient higher quality and lower consumption to hole’s precise and superprecise machining. At last,the paper introduce the conclution: Ultrasonic honing sharpens grain, which is favorable for raising cutting efficiency; Ultrasonic vibration honing may increase honing depth and raise cutting efficiency. It may also decrease honing power and system deformation; Undergoing practice we can find that the ultrasonic honing system as above discribed can be extended and applied to production. The system not only can be applied to conventional honing machine, its technology effect as good as high precision machine tool, but also can be applied to develop and study ultrasonic vibrating numbrical controlling honing machine tool which will provide a new type, efficient, high quality low consumption, equipment for working precision hole; Appling the same parament as W40 oilstone bar, under the same condition, is very valuable for product and application. Rough machining and finish machining once time finished, which not only improve location accuracy, but also have a high effiency.The honing system not only can be suitable for honing cast cylinder, but also can be applied for honing engineer ceramics as well as hard, crisp material; The dimension and technology paraments of 47 mm honing system as above discribed, can be suitable for honing the cast cylinder of motorcycle or minicar. And the cylinder diameter can be randomly selected from 45 to 65. The dimension and technology paramagnets of 86 honing system as above discribed,can be applied for honing all kinds of cylinder of light or heavy passenger-cargo vehicle, and the cylinder diameter can be randomly selected from 65 to 100; It is easy to achieve new technology of flat roof honing by applying ultrasonic honing.After the flat roof honing, fuel consumption of engine is 1g/Hp, while conventional engine is 3g/Hp.Life expectancy of engine is prolonged greatly after the cylinder by flat roof honing. 展开更多
关键词 ultrasonic honing cutting principle CYLINDER applying effect
下载PDF
Effects of process parameters on periodic impact force exerting on cutting tool in ultrasonic vibration-assisted oblique turning
14
作者 Long-Xu Yao Zhan-Qiang Liu +2 位作者 Qing-Hua Song Bing Wang Yu-Kui Cai 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第3期411-427,共17页
During ultrasonic vibration-assisted machining,the large impact force induced by tool-workpiece reengagement(TWR)is an important factor that affects tool chipping.However,mechanical analysis into process factors that ... During ultrasonic vibration-assisted machining,the large impact force induced by tool-workpiece reengagement(TWR)is an important factor that affects tool chipping.However,mechanical analysis into process factors that affect the impact force and their influencing mechanisms are insufficient.Herein,a prediction model for the instantaneous cutting force during both TWR and the stable turning process,which depends on the process parameters and material properties,is firstly proposed based on the kinematic and dynamic analysis of ultrasonic vibration-assisted oblique turning(UVAOT).The results calculated using the developed cutting force model agree well with the experimental results presented in the literature.Next,the linear change law of the instantaneous cutting force with cutting time during the actual TWR is clarified using the proposed model.The effect of the UVAOT process parameters on the average impact force during the periodic TWR process is discussed,and the influence mechanism is analyzed from the perspective of mechanics.A positive linear correlation is discovered between the feed speed and average impact force.The ultrasonic amplitude and cutting speed do not significantly affect the average impact force of the new sharp cutting tools.These findings are consistent with the experimental observations of tool chipping and are applicable to select process parameters for reducing tool chipping during UVAOT. 展开更多
关键词 KINEMATICS DYNAMICS ultrasonic vibrationassisted oblique turning(UVAOT) Impact force cutting force
原文传递
Development of Integrated Precision Vibration-Assisted Micro-Engraving System
15
作者 陈华伟 程明龙 +1 位作者 李佑杰 张德远 《Transactions of Tianjin University》 EI CAS 2011年第4期242-247,共6页
A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and... A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and PID control algorithm was established to guarantee specific precision. Apart from experimental validation of the performance of the system, various micro-V-grooves cutting experiments on aluminum alloy, ferrous material and hard cutting material were performed, in which Kistler force sensor was used to measure cutting force. Through experiments, it was clear that the vibration-assisted micro-engraving system can ensure good quality of micro-V-grooves and reduce cutting force by about 60% compared with traditional removal process without ultrasonic vibration. 展开更多
关键词 micro-structure surface micro-engraving fast tool servo ultrasonic elliptical vibration precision cutting
下载PDF
Study of Oil-Bearing Drill Cuttings Cleaning and De-Oiling Treatment Method for Shale Gas Reservoirs
16
作者 Jialuo Rong Shuixiang Xie +3 位作者 Huijing Geng Hao Hu Shanfa Tang Yuanpeng Cheng 《Energy Engineering》 EI 2023年第8期1899-1917,共19页
Due to its extensive use in shale gas exploration and development,oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process.The large amount of oil-bearing drill cuttin... Due to its extensive use in shale gas exploration and development,oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process.The large amount of oil-bearing drill cuttings generated during the drilling process can lead to serious secondary contamination.In this study,a wetting agent FSC-6 with good hydrophobic and oleophobic properties was synthesized to construct an efficient oil removal system.For the first time,the mechanism of this system was analyzed by using the theory of adhesion function,interfacial tension and wettability.At the same time,a combined acoustic-chemical treatment process was applied to the wastewater and slag generated after the cleaning of the oil-bearing drill cuttings.The experimental results show that the application of this pollution-free technology can effectively solve the environmental pollution and resource recovery problems of oil-bearing drill cuttings.It meets the standard of drilling chips with oil content less than 2%in SY/T7422-2018“Oil-based drilling fluid drilling chips treatment system for oil and gas drilling equipment”. 展开更多
关键词 Oil-bearing drill cuttings fluorocarbon surfactants chemical cleaning ultrasonic cleaning oil content rate
下载PDF
Influence of transversal vibration on cutting performance and surface integrity during ultrasonic peening drilling of Al-Li alloys
17
作者 Zhefei SUN Daxi GENG +6 位作者 Hailin GUO Ende GE Entao ZHOU Zhilei FAN Fanxing MENG Xinggang JIANG Deyuan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期493-507,共15页
Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied ... Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy. 展开更多
关键词 Al-Li alloy ultrasonic transversal vibration cutting tools Strengthening mechanism Surface integrity
原文传递
Ultrasonic vibration-assisted machining:principle,design and application 被引量:21
18
作者 Wei-Xing Xu Liang-Chi Zhang 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第3期173-192,共20页
Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make ... Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end. 展开更多
关键词 ultrasonic vibration-assisted (UVA) machining. cutting Metal alloys CERAMICS Composites
原文传递
Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder 被引量:11
19
作者 Zhenlong PENG Deyuan ZHANG Xiangyu ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3535-3549,共15页
Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for the... Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC. 展开更多
关键词 High-speed machining Minimum chip thickness Mode-coupling Thin-walled cylinder ultrasonic vibration cutting
原文传递
Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics 被引量:7
20
作者 Fan CHEN Guangxi LI +1 位作者 Bo ZHAO Wenbo BIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期125-140,共16页
Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is em... Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film.Based on the fracture mechanics of material,the model of internal stress for oxide film damage is proposed.The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature.The theoretical model is established for the mechanical force,thermal stress and internal stress respectively.Then the finite element analysis method is used to simulate the theoretical model.The mechanical force and grinding temperature is measured during the actual grinding test.During the grinding process,the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed.Compared with the conventional ELID(CELID)grinding,the mechanical force decreased by 25.6%and 22.4%with the increase of grinding wheel speed and grinding depth respectively,and the grinding temperature declined by 10.7%and12.8%during the UVA-ELID grinding.The thermal stress in the latter decreased by 16.3%and20.8%respectively,and internal stress reduced by 12.3%and 15.6%.It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former.The results indicate that the action of ultrasonic vibration establish a significant effect on the processing.Subsequently,it should be well considered for future reference when processing the ZTA ceramics. 展开更多
关键词 Oxide film Surface quality Thermomechanical loading ultrasonic vibration-assisted ELID grinding ZTA ceramics
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部