Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
In the point of application to ultrasonic nondestructive testing of surface stress and defect in polymer component, the oblique suxface wave transducer is investigated on its acoustic property and especially the mecha...In the point of application to ultrasonic nondestructive testing of surface stress and defect in polymer component, the oblique suxface wave transducer is investigated on its acoustic property and especially the mechanism of acoustic attenuation of acoustic entrant material inside the transducer. A new kind of room temperature vulcanized silicone elastomer as wedge material, in which ultrasound can propagate in very low speed with weak attenuation, is developed through a great deal of trials. The corresponding ultrasonic transducer is also designed for further researches and application to detect surface stress and surface crack in aerospace transparent component.展开更多
Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attent...Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.展开更多
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
文摘In the point of application to ultrasonic nondestructive testing of surface stress and defect in polymer component, the oblique suxface wave transducer is investigated on its acoustic property and especially the mechanism of acoustic attenuation of acoustic entrant material inside the transducer. A new kind of room temperature vulcanized silicone elastomer as wedge material, in which ultrasound can propagate in very low speed with weak attenuation, is developed through a great deal of trials. The corresponding ultrasonic transducer is also designed for further researches and application to detect surface stress and surface crack in aerospace transparent component.
文摘Ultrasonic wave testing was applied to investigate the quality and weathering status of rock specimens obtained in two borings situated in the Xishan Buddha rock slope in Taiyuan, China. This paper pays special attention to the distribution of bulk density, dynamic parameters and static parameters of rock specimens as well as the relationship between static and dynamic parameters. The results illustrate that the distribution of both parameters is identical along the depth of two drilled holes in the rock slope. When the hole depth increases, the density of rock mass, saturated compression strength and static elastic modulus, dynamic elastic modulus and wave velocity also show increase tendency. The weathering degree in the rock mass ranging from the surface of cliff to the depth of 2.5 m is the highest while the rock mass is unsalted and more rigid when the depth is larger than 3.0 m. The relationship between dynamic elastic modulus, sonic wave velocity and horizontal depth indicates that dynamic elastic modulus is more sensitive than sonic wave velocity. Conversely, by comparing quantity relationship between static elastic modulus and sonic wave velocity, it is found that the composition of rock has a great influence on the relationship between static and dynamic parameters, that is, inequality of rock composition will lead to dispersion and abnormality of the distribution of static and dynamic parameters.