Central composite design (CCD)sp. JS14 in a solvent extraction was established with Response surface methodology (RSM). Solvent concentration, pH, temperature and retention time were selected as process variables to e...Central composite design (CCD)sp. JS14 in a solvent extraction was established with Response surface methodology (RSM). Solvent concentration, pH, temperature and retention time were selected as process variables to evaluate the purification impact factor in solvent precipitation, including the purification fold and % recovery. An experimental space with 13 purification fold and 23 recovery percentage recovery is achieved through the optimized condition based on the model. The molecular weight of the purified enzyme was estimated to be 32.5 KDa. Optimum activity of purified enzyme was at pH and temperature 6.5℃ and 40℃ respectively. Enzyme showed maximum activity with carboxymethyl cellulose as substrate with compare to rice husk, wheat straw and sucrose. The purified cellulase activity was inhibited by Na+, Cl- Mg2+ Tween 80 and EDTA.展开更多
In the present study, we aimed to investigate the effects of key extraction parameters including extraction time(10–20 min), extraction temperature(30–60 °C), ultrasonic power(60–90 W) and solvent-to-so...In the present study, we aimed to investigate the effects of key extraction parameters including extraction time(10–20 min), extraction temperature(30–60 °C), ultrasonic power(60–90 W) and solvent-to-solid(S/S) ratio(10–30 m L/g) on yield of celastrol from Celastrus monospermus Roxb. To optimize the conditions, we investigated the effects of parameters on the ultrasound assisted extraction(UAE) with the Box-Behnken Design(BBD), one widely used form of Response Surface Methodology(RSM). In all tested solvents, ethanol was the most effective for celastrol extraction, followed by methanol, ethanol, ethyl acetate, n-butanol and water. A second order polynomial model was fitted well to the extraction experimental data with R2 of 0.9928. Extraction yield of 3.116 mg/g was obtained for celastrol under the optimized extraction conditions of extraction time(20 min), extraction temperature(46 °C), ultrasonic power(60 W) and S/S ratio(30 m L/g). Experimental validation was performed, and the experimental values agreed well with the predicted values. The results indicated that the UAE was good extraction material for celastrol from C. monospermus Roxb.展开更多
For the efficient extraction of kamebakaurin(KA), the ultrasound-assisted extraction(UAE) of KA from Rabdosia excisa(R, excisa) via response surface methodology(RSM) was investigated with high-performance liqu...For the efficient extraction of kamebakaurin(KA), the ultrasound-assisted extraction(UAE) of KA from Rabdosia excisa(R, excisa) via response surface methodology(RSM) was investigated with high-performance liquid chromatography(HPLC). Effects of the experimental parameters such as extraction solvent, ratio of liquid to plant material, extraction time and extraction temperature on the extracting efficiency of KA from R. excisa were evaluated, and the purity of KA in residual was calculated. The optimized conditions were 65.5%(volume fraction) acetone, 35 ℃, time of 24.6 min with ultrasound of 80 W/L, 40 kHz, ratio of liquid to plant material at 30:1(mL/g). The maximum yield of KA is 0.708 mg/kg, with mean purity of 6.09%, indicating that ultrasound-assisted extraction is a feasible and useful method for extracting KA from R. excisa.展开更多
A natural bacterial strain identified as Bacillus amyloliquefaciens MBAA3 using 16S rDNA partial genome sequencing has been studied for optimization of cellulase production.Statistical screening of media components fo...A natural bacterial strain identified as Bacillus amyloliquefaciens MBAA3 using 16S rDNA partial genome sequencing has been studied for optimization of cellulase production.Statistical screening of media components for production of cellulase by B.amyloliquefaciens MBAA3 was carried out by Plackett–Burman design.Plackett–Burman design showed CMC,MgSO4 and pH as significant components influencing the cellulase production from the media components screened by Plackett-Burman fractional factorial design.The optimum concentrations of these significant parameters were determined employing the response surface central composite design,involving three factors and five levels was adopted to acquire the best medium for the production of cellulase enzyme revealed concentration of CMC(1.84 g),MgSO4(0.275 g),and pH(8.5)in media for highest enzyme production.Response surface counter plots revealed that middle level of MgSO4 and middle level of CMC,higher level of CMC and lower level of pH and higher level of MgSO4 with lower level of pH increase the production of cellulase.After optimization cellulase activity increased by 6.81 fold.Presence of cellulase gene in MBAA3 was conformed by the amplification of genomic DNA of MBAA3.A PCR product of cellulase gene of 1500 bp was successfully amplified.The amplified gene was conformed by sequencing the amplified product and sequence was deposited in the gene bank under the accession number KF929416.展开更多
The production of cellulase in Bacillus amyloliquefaciens UNPDV-22 was optimized using response surface methodology (RSM). Central composite design (CCD) was used to study the interactive effect of culture conditi...The production of cellulase in Bacillus amyloliquefaciens UNPDV-22 was optimized using response surface methodology (RSM). Central composite design (CCD) was used to study the interactive effect of culture conditions (temperature, pH, and inoculum) on cellulase activity. Results suggested that temperature and pH all have significant impact on cellulase production. The use of RSM resulted in a 96% increase in the cellulase activity over the control of non-optimized basal medium. Optimum cellulase production of 13 U/mL was obtained at a temperature of 42.24 ℃, pH of 5.25, and inoculum size of 4.95% (v/v) in a fermentation medium containing wheat bran, soybean meal and malt dextrin as major nutritional factors.展开更多
Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subti...Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subtilus K-18. Maximum cellulose production performed in 250 mL erlenmeyer flask with submerged fermentation attained at 50"C, pH 5, 140 r· min-1 for 24 h. Results showed the efficient cellulose production from acid steam pretreatrnent (being autoclaved at 15 Psi for 15 rain) than acid pretreatment. The optimum condition for maximum carboxymethyl cellulas (CMCase) was 1.811 IU·mL-1·min-1 (0.8% acid cone., 10 g biomass loading, 6 h reaction time) and filter paper activity (FPase) was 2.255 IU·mL·-1·min-1 (1% acid conc., 10 g biomass loading, 8 h reaction time). Whereas, the acid steam maximum CMCase activity recorded was 2.585 IU·mL-1·min-1 (0.8% acid cone., 15 g substrate loading and 8 h reaction time) and the highest FPase activity was 2.055 IU·mL-1·min-1 (0.8% cone., 10 g biomass, 6 h reaction time then autoclaved). Results revealed that acid pretreated Eucalyptus leaves were better lignocellulosic biomass for cellulose production by submerged fermentation.展开更多
文摘Central composite design (CCD)sp. JS14 in a solvent extraction was established with Response surface methodology (RSM). Solvent concentration, pH, temperature and retention time were selected as process variables to evaluate the purification impact factor in solvent precipitation, including the purification fold and % recovery. An experimental space with 13 purification fold and 23 recovery percentage recovery is achieved through the optimized condition based on the model. The molecular weight of the purified enzyme was estimated to be 32.5 KDa. Optimum activity of purified enzyme was at pH and temperature 6.5℃ and 40℃ respectively. Enzyme showed maximum activity with carboxymethyl cellulose as substrate with compare to rice husk, wheat straw and sucrose. The purified cellulase activity was inhibited by Na+, Cl- Mg2+ Tween 80 and EDTA.
文摘In the present study, we aimed to investigate the effects of key extraction parameters including extraction time(10–20 min), extraction temperature(30–60 °C), ultrasonic power(60–90 W) and solvent-to-solid(S/S) ratio(10–30 m L/g) on yield of celastrol from Celastrus monospermus Roxb. To optimize the conditions, we investigated the effects of parameters on the ultrasound assisted extraction(UAE) with the Box-Behnken Design(BBD), one widely used form of Response Surface Methodology(RSM). In all tested solvents, ethanol was the most effective for celastrol extraction, followed by methanol, ethanol, ethyl acetate, n-butanol and water. A second order polynomial model was fitted well to the extraction experimental data with R2 of 0.9928. Extraction yield of 3.116 mg/g was obtained for celastrol under the optimized extraction conditions of extraction time(20 min), extraction temperature(46 °C), ultrasonic power(60 W) and S/S ratio(30 m L/g). Experimental validation was performed, and the experimental values agreed well with the predicted values. The results indicated that the UAE was good extraction material for celastrol from C. monospermus Roxb.
基金the National Natural Science Foundation of China,the Postdoctoral Foundation of Jiangsu Province,China,the China Postdoctoral Science Foundation
文摘For the efficient extraction of kamebakaurin(KA), the ultrasound-assisted extraction(UAE) of KA from Rabdosia excisa(R, excisa) via response surface methodology(RSM) was investigated with high-performance liquid chromatography(HPLC). Effects of the experimental parameters such as extraction solvent, ratio of liquid to plant material, extraction time and extraction temperature on the extracting efficiency of KA from R. excisa were evaluated, and the purity of KA in residual was calculated. The optimized conditions were 65.5%(volume fraction) acetone, 35 ℃, time of 24.6 min with ultrasound of 80 W/L, 40 kHz, ratio of liquid to plant material at 30:1(mL/g). The maximum yield of KA is 0.708 mg/kg, with mean purity of 6.09%, indicating that ultrasound-assisted extraction is a feasible and useful method for extracting KA from R. excisa.
文摘A natural bacterial strain identified as Bacillus amyloliquefaciens MBAA3 using 16S rDNA partial genome sequencing has been studied for optimization of cellulase production.Statistical screening of media components for production of cellulase by B.amyloliquefaciens MBAA3 was carried out by Plackett–Burman design.Plackett–Burman design showed CMC,MgSO4 and pH as significant components influencing the cellulase production from the media components screened by Plackett-Burman fractional factorial design.The optimum concentrations of these significant parameters were determined employing the response surface central composite design,involving three factors and five levels was adopted to acquire the best medium for the production of cellulase enzyme revealed concentration of CMC(1.84 g),MgSO4(0.275 g),and pH(8.5)in media for highest enzyme production.Response surface counter plots revealed that middle level of MgSO4 and middle level of CMC,higher level of CMC and lower level of pH and higher level of MgSO4 with lower level of pH increase the production of cellulase.After optimization cellulase activity increased by 6.81 fold.Presence of cellulase gene in MBAA3 was conformed by the amplification of genomic DNA of MBAA3.A PCR product of cellulase gene of 1500 bp was successfully amplified.The amplified gene was conformed by sequencing the amplified product and sequence was deposited in the gene bank under the accession number KF929416.
文摘The production of cellulase in Bacillus amyloliquefaciens UNPDV-22 was optimized using response surface methodology (RSM). Central composite design (CCD) was used to study the interactive effect of culture conditions (temperature, pH, and inoculum) on cellulase activity. Results suggested that temperature and pH all have significant impact on cellulase production. The use of RSM resulted in a 96% increase in the cellulase activity over the control of non-optimized basal medium. Optimum cellulase production of 13 U/mL was obtained at a temperature of 42.24 ℃, pH of 5.25, and inoculum size of 4.95% (v/v) in a fermentation medium containing wheat bran, soybean meal and malt dextrin as major nutritional factors.
文摘Effects of dilute acid and acid steam pretreatments were inspected for cellulose production of Eucalyptus leaves through Box-Behenken design, a three variable factors for response surface methodology by Bacillus subtilus K-18. Maximum cellulose production performed in 250 mL erlenmeyer flask with submerged fermentation attained at 50"C, pH 5, 140 r· min-1 for 24 h. Results showed the efficient cellulose production from acid steam pretreatrnent (being autoclaved at 15 Psi for 15 rain) than acid pretreatment. The optimum condition for maximum carboxymethyl cellulas (CMCase) was 1.811 IU·mL-1·min-1 (0.8% acid cone., 10 g biomass loading, 6 h reaction time) and filter paper activity (FPase) was 2.255 IU·mL·-1·min-1 (1% acid conc., 10 g biomass loading, 8 h reaction time). Whereas, the acid steam maximum CMCase activity recorded was 2.585 IU·mL-1·min-1 (0.8% acid cone., 15 g substrate loading and 8 h reaction time) and the highest FPase activity was 2.055 IU·mL-1·min-1 (0.8% cone., 10 g biomass, 6 h reaction time then autoclaved). Results revealed that acid pretreated Eucalyptus leaves were better lignocellulosic biomass for cellulose production by submerged fermentation.