Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localize...Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.展开更多
Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% ...Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.展开更多
Forests and grasslands in arid and semi-arid regions receive high-intensity ultraviolet(UV) radiation year-round. However, how the UV radiation affects the litter decomposition on the forest floor remains unclear. H...Forests and grasslands in arid and semi-arid regions receive high-intensity ultraviolet(UV) radiation year-round. However, how the UV radiation affects the litter decomposition on the forest floor remains unclear. Here, we conducted a field-based experiment in 2011 in the southeastern Horqin Sandy Land, Northeast China, to investigate the effects of UV radiation, litter layer thickness, and their interaction on the mass loss and chemical properties of decomposing litter from Xiaozhuan poplar(Populus × xiaozhuanica) and Mongolian pine(Pinus sylvestris var. mongolica) plantation trees. We found that UV radiation accelerated the decomposition rates of both the Xiaozhuan poplar litter and Mongolian pine litter. For both species, the thick-layered litter had a lower mass loss than the thin-layered litter. The interaction between UV radiation and litter layer thickness significantly affected the litter mass loss of both tree species. However, the effects of UV radiation on the chemical properties of decomposing litter differed between the two species, which may be attributed to the contrasting initial leaf litter chemical properties and morphology. UV radiation mostly had positive effects on the lignin concentration and lignin/N ratio of Xiaozhuan poplar litter, while it had negative effects on the N concentration of Mongolian pine litter. Moreover, litter layer thickness and its interaction with UV radiation showed mostly positive effects on the N concentration and lignin/N ratio of Xiaozhuan poplar litter and the ratios of C/N and lignin/N of Mongolian pine litter, and mostly negative effects on the C/N ratio of Xiaozhuan poplar litter and the N concentration of Mongolian pine litter. Together, these results reveal the important roles played by UV radiation and litter layer thickness in the process of litter decomposition in this semi-arid region, and highlight how changes in the litter layer thickness can exert strong influences on the photodegradation of litter in tree plantations.展开更多
The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of thi...The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of this study was to evaluate the effect of UV radiation on pure and encapsulated conidia <i>Beauveria bassiana</i> and <i>Metarhizium anisopliae sensu lato</i>, and to evaluate their pathogenicity on the sugarcane borer, <i>Diatraea saccharalis</i>. The pure conidia and the sodium alginate capsules containing the fungi were submitted to the ultraviolet radiation in different temperatures and exposure times. On the pure conidia, the radiation had a deleterious effect after 5 minutes of exposure, going from 94% to 52% germination for <i>B. bassiana</i> and from 96% to 54% for <i>M. anisopliae</i>. The alginate formulation protected the <i>B. bassiana</i> conidia against the radiation in all times they were evaluated (15 minutes to 48 hours), because, even after exposure, the fungi remained viable. The dry encapsulated conidia <i>B. bassiana</i> caused 79.6% mortality of the studied pest and the <i>M. anisopliae</i> caused only 10%.展开更多
The effects of different types of ultraviolet(UV)radiation(UVR,wavelength=280-400 nm)and light intensities on cell growth,pigment composition,UV-absorbing compounds(UVACs),and chlorophyll a(Chl a)fluorescence were stu...The effects of different types of ultraviolet(UV)radiation(UVR,wavelength=280-400 nm)and light intensities on cell growth,pigment composition,UV-absorbing compounds(UVACs),and chlorophyll a(Chl a)fluorescence were studied in dinoflag-ellate Prorocentrum lima cultured outdoors for 16 days and indoors for 18 days.In the outdoor experiment,UVA radiation(320-400 nm)increased the growth rate of this dinoflagellate when solar light intensities were<12%;decreased growth rates were observed when intensities were>12%.Exposure to UVB radiation(280-320 nm)alleviated the negative effects of UVA.In the indoor ex-periment,UVA and low doses of UVB enhanced growth rates.Addition of low doses of UVB to UVA exposure resulted in higher contents of Chl a and photoprotective pigments compared with UVA exposure only.The results of both experiments showed that UVB is the primary signal of UVAC synthesis.High-dose UVB exposure accelerated growth rates when UVAC contents were maintained at high levels,suggesting that the latter plays a key role in UVR damage protection.Furthermore,the repair rate was en-hanced by UVB exposure after 16 days of culture.This study confirms the positive effects of UVA and UVB on the growth of P.lima,with the latter enhancing the photoprotective and recovery pathways of the species.展开更多
The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of thi...The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of this study was to evaluate the effect of UV radiation on pure and encapsulated conidia Beauveria bassiana and Metarhizium anisopliae sensu lato, and to evaluate their pathogenicity on the sugarcane borer, Diatraea saccharalis. The pure conidia and the sodium alginate capsules containing the fungi were submitted to the ultraviolet radiation in different temperatures and exposure times. On the pure conidia, the radiation had a deleterious effect after 5 minutes of exposure, going from 94% to 52% germination for B. bassiana and from 96% to 54% for M. anisopliae. The alginate formulation protected the B. bassiana conidia against the radiation in all times they were evaluated (15 minutes to 48 hours), because, even after exposure, the fungi remained viable. The dry encapsulated conidia B. bassiana caused 79.6% mortality of the studied pest and the M. anisopliae caused only 10%.展开更多
文摘Geometry optimization of p-C_(6)H_(4)-connected cyclo[20]carbon(p-C_(6)H_(4)-C_(20))was carried out at M062X/6-311G(d,p)level,three kinds of bond orders(Mayer,Laplacian,and Wiberg),electron-hole distributions,localized orbital locators(LOL),and infrared(IR)spectrum were also performed at the same level.Based on TD-DFT M062X/6-311G(d,p)method,the first 20 excited states and ultraviolet(UV)spectra of p-C_(6)H_(4)-C_(20) were calculated.Calculation results of π-electron delocalization analyses prove thatπ-electron delocalization of p-C_(6)H_(4)-C_(20) is more likely to occur on shorter C-C bonds rather than longer C-C bonds,and inside/outside of the ring plane rather than above/below the ring plane.Two absorption peaks of p-C_(6)H_(4)-C_(20) locate at about 319 nm and 236 nm,respectively.
基金the Innovation Program of the Institute of Oceanology,CAS (No.L86032523)the Project of Ministry of Sciences and Technology of China (No.02EFN216601213)
文摘Two strains H2-410 and H2-419 were obtained from the chemically mutated survivors of wild Haematococcus pluvialis 2 by using ethyl methanesulphonate (EMS). Strains H2-410 and H2-419 showed a fast cell growth with 13% and 20% increase in biomass compared to wild type, respectively. Then H2-419-4, a fast cell growth and high astaxanthin accumulation strain, was obtained by exposing the strain H2-419 to ultraviolet radiation (UV) further. The total biomass, the astaxanthin content per cell, astaxanthin production of H2-419-4 showed 68%, 28%, and 120% increase compared to wild H. pluvialis 2, respectively. HPLC (High Performance Liquid Chromatography) data showed also an obvious proportional variation of different carotenoid compositions in the extracts of H2-419-4 and the wild type, although no peak of carotenoids appeared or disappeared. Therefore, the main compositions in strain H2-419-4, like its wild one, were free of astaxanthin, monoester, and diester of astaxanthin. The asexual reproduction in survivors after exposed to UV was not synchronous, and different from the normal synchronous asexual reproduction as the mother cells were motile instead of non-motile. Interestingly, some survivors from UV irradiation produced many mini-spores (or gamete?), the spores moved away from the mother cell gradually 4 or 5 days later. This is quite similar to sexual reproduction described by Elliot in 1934. However, whether this was sexual reproduction remains questionable, as no mating process has been observed.
基金supported by the National Natural Science Foundation of China (31270668,41373038)the National Basic Research Program of China (2012CB416902)the China Postdoctoral Science Foundation (2016M601342)
文摘Forests and grasslands in arid and semi-arid regions receive high-intensity ultraviolet(UV) radiation year-round. However, how the UV radiation affects the litter decomposition on the forest floor remains unclear. Here, we conducted a field-based experiment in 2011 in the southeastern Horqin Sandy Land, Northeast China, to investigate the effects of UV radiation, litter layer thickness, and their interaction on the mass loss and chemical properties of decomposing litter from Xiaozhuan poplar(Populus × xiaozhuanica) and Mongolian pine(Pinus sylvestris var. mongolica) plantation trees. We found that UV radiation accelerated the decomposition rates of both the Xiaozhuan poplar litter and Mongolian pine litter. For both species, the thick-layered litter had a lower mass loss than the thin-layered litter. The interaction between UV radiation and litter layer thickness significantly affected the litter mass loss of both tree species. However, the effects of UV radiation on the chemical properties of decomposing litter differed between the two species, which may be attributed to the contrasting initial leaf litter chemical properties and morphology. UV radiation mostly had positive effects on the lignin concentration and lignin/N ratio of Xiaozhuan poplar litter, while it had negative effects on the N concentration of Mongolian pine litter. Moreover, litter layer thickness and its interaction with UV radiation showed mostly positive effects on the N concentration and lignin/N ratio of Xiaozhuan poplar litter and the ratios of C/N and lignin/N of Mongolian pine litter, and mostly negative effects on the C/N ratio of Xiaozhuan poplar litter and the N concentration of Mongolian pine litter. Together, these results reveal the important roles played by UV radiation and litter layer thickness in the process of litter decomposition in this semi-arid region, and highlight how changes in the litter layer thickness can exert strong influences on the photodegradation of litter in tree plantations.
文摘The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of this study was to evaluate the effect of UV radiation on pure and encapsulated conidia <i>Beauveria bassiana</i> and <i>Metarhizium anisopliae sensu lato</i>, and to evaluate their pathogenicity on the sugarcane borer, <i>Diatraea saccharalis</i>. The pure conidia and the sodium alginate capsules containing the fungi were submitted to the ultraviolet radiation in different temperatures and exposure times. On the pure conidia, the radiation had a deleterious effect after 5 minutes of exposure, going from 94% to 52% germination for <i>B. bassiana</i> and from 96% to 54% for <i>M. anisopliae</i>. The alginate formulation protected the <i>B. bassiana</i> conidia against the radiation in all times they were evaluated (15 minutes to 48 hours), because, even after exposure, the fungi remained viable. The dry encapsulated conidia <i>B. bassiana</i> caused 79.6% mortality of the studied pest and the <i>M. anisopliae</i> caused only 10%.
基金The work was supported by the National Natural Sci-ence Foundation of China(Nos.41706126,41876173 and 41606176).
文摘The effects of different types of ultraviolet(UV)radiation(UVR,wavelength=280-400 nm)and light intensities on cell growth,pigment composition,UV-absorbing compounds(UVACs),and chlorophyll a(Chl a)fluorescence were studied in dinoflag-ellate Prorocentrum lima cultured outdoors for 16 days and indoors for 18 days.In the outdoor experiment,UVA radiation(320-400 nm)increased the growth rate of this dinoflagellate when solar light intensities were<12%;decreased growth rates were observed when intensities were>12%.Exposure to UVB radiation(280-320 nm)alleviated the negative effects of UVA.In the indoor ex-periment,UVA and low doses of UVB enhanced growth rates.Addition of low doses of UVB to UVA exposure resulted in higher contents of Chl a and photoprotective pigments compared with UVA exposure only.The results of both experiments showed that UVB is the primary signal of UVAC synthesis.High-dose UVB exposure accelerated growth rates when UVAC contents were maintained at high levels,suggesting that the latter plays a key role in UVR damage protection.Furthermore,the repair rate was en-hanced by UVB exposure after 16 days of culture.This study confirms the positive effects of UVA and UVB on the growth of P.lima,with the latter enhancing the photoprotective and recovery pathways of the species.
文摘The effect of ultraviolet radiation on entomopathogenic fungi can be very prejudicial for causing damage to the conidia. Formulations can help protecting these fungal structures against radiation. The objective of this study was to evaluate the effect of UV radiation on pure and encapsulated conidia Beauveria bassiana and Metarhizium anisopliae sensu lato, and to evaluate their pathogenicity on the sugarcane borer, Diatraea saccharalis. The pure conidia and the sodium alginate capsules containing the fungi were submitted to the ultraviolet radiation in different temperatures and exposure times. On the pure conidia, the radiation had a deleterious effect after 5 minutes of exposure, going from 94% to 52% germination for B. bassiana and from 96% to 54% for M. anisopliae. The alginate formulation protected the B. bassiana conidia against the radiation in all times they were evaluated (15 minutes to 48 hours), because, even after exposure, the fungi remained viable. The dry encapsulated conidia B. bassiana caused 79.6% mortality of the studied pest and the M. anisopliae caused only 10%.