For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
The principle and performance of Synthetic Impulse and Antenna Radar(SIAR) are analyzed with the concept of 3D matched filtering. The discussion here is concentrated on the characteristics of SIAR in the case of three...The principle and performance of Synthetic Impulse and Antenna Radar(SIAR) are analyzed with the concept of 3D matched filtering. The discussion here is concentrated on the characteristics of SIAR in the case of three dimensions. The results obtained are helpful for designing this new style radar.展开更多
Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), it...Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.展开更多
We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fas...We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.展开更多
Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the ...Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.展开更多
This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. M...This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
文摘The principle and performance of Synthetic Impulse and Antenna Radar(SIAR) are analyzed with the concept of 3D matched filtering. The discussion here is concentrated on the characteristics of SIAR in the case of three dimensions. The results obtained are helpful for designing this new style radar.
文摘Sparse-array Synthetic Impulse and Aperture Radar (SIAR) can isotropically radiate by employing multiple frequencies (synthetic pulse) and multiple antennas (synthetic antenna). According to Ambiguity Function(AF), its range resolution depends only on bandwidth of transmitted signals, however, the distance grating lobes emerge when increasing the time-bandwidth product of transmitted signals. The performance of pulse compression is analyzed with the transmitted signals modulated by phase-coded sequences. It is seen that greater ratio of pulse compression and suppression of range sidelobe in SIAR can be obtained, and its effective range and range resolution is increased as well.
基金supported by the Polar Strategic Research Foundation of China(Grant no.20100203)the National Natural Science Foundation of China(Grant nos.40974083,41031064,40904041)+2 种基金the Ocean Public Welfare Scientific Research Project of China(Grant no.201005017)the International Collaboration Supporting Project,Chinese Arctic and Antarctic Administration(Grant no.IC201303)the National Basic Research Program of China(Grant no.2010CB950503-06)
文摘We present observations of a duskside shock aurora occurred on 21 April 2001 by the SuperDARN radar at Syowa Station and the all-sky camera at Zhongshan Station (ZHS) in Antarctica when the radar was operated in fast-scan mode covering the ZHS region. With the two independent data sets, we examine ionospheric plasma convection and aurora arising from a sudden impulse (SI) event associated with an interplanetary shock. During the transient shock compression, the aurora was quiescent without any optical emission at the preliminary impulse of the SI. About 7 min later, a new thin auroral arc with brighter emissions and a lifetime of -14 rain expanded westward from the region above ZHS during the main impulse of the SI. SuperDARN radar line-of-sight measurements showed periodical oscillation in the flow direction with ultra-low-frequency waves having a period of -8 min during the shock compression. We suggest that downward field-aligned current during the preliminary impulse stage of the SI was the main driver of the first plasma flow reversal, and the subsequent new discrete auroral arc may be associated with field-aligned acceleration in the region of the main impulse related upward field-aligned currents. The ground magnetometer observations suggest that the oscillation of the ionospheric convection on the duskside was associated with field line resonance activity.
基金This work was supported by the National Key Research and Development Program of China(2018YFC0810202)the National Defence Pre-research Foundation of China(61404130119).
文摘Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.
文摘This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.