期刊文献+
共找到4,089篇文章
< 1 2 205 >
每页显示 20 50 100
Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine
1
作者 Shafiqa Naeem Rajput Bushra Kiran Naeem +2 位作者 Anwar Ali Asmat Salim Irfan Khan 《World Journal of Stem Cells》 SCIE 2024年第4期410-433,共24页
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the... BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies. 展开更多
关键词 Human umbilical cord mesenchymal stem cells EXPANSION cell proliferation In vitro expansion SENESCENCE
下载PDF
Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial 被引量:5
2
作者 Neslihan Sinim Kahraman Ayse Oner 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第9期1423-1429,共7页
AIM:To investigate the efficacy and the safety of umbilical cord derived mesenchymal stem cell(UC-MSC)implantation in patients with retinitis pigmentosa(RP).METHODS:This prospective,single-center,phase 3 clinical stud... AIM:To investigate the efficacy and the safety of umbilical cord derived mesenchymal stem cell(UC-MSC)implantation in patients with retinitis pigmentosa(RP).METHODS:This prospective,single-center,phase 3 clinical study enrolled 124 eyes of 82 RP patients.The patients received 5 million UC-MSCs to the suprachoroidal area with a surgical procedure.Patients were evaluated on the 1st day,1st,and 6th months postoperatively.Best corrected visual acuity(BCVA),anterior segment and fundus examinations,color photography,optical coherence tomography(OCT),and visual field(VF)tests were carried out at each visit.Fundus fluorescein angiography(FFA)and multifocal electroretinography(mfERG)recordings were performed at the end of the 6th month.Ocular and systemic adverse events of the surgical procedure were also noted.RESULTS:All of the 82 patients completed the 6-month follow-up period.None of them had any serious systemic or ocular complications.There were statistically significant improvements in BCVA and VF during the study(all P<0.05).The amplitudes of the P1 waves in the central areas showed significant improvements in mfERG recordings.There were also significant increases in implicit times of P1 waves in the central areas.CONCLUSION:Suprachoroidal administration of UC-MSCs has beneficial effect on BCVA,VF,and mfERG measurements during the 6-month follow-up period.Cell mediated therapy based on the secretion of growth factors(GFs)seems to be an effective and safe option for degenerative retinal diseases. 展开更多
关键词 cell mediated therapy retinitis pigmentosa suprachoroidal umbilical cord derived mesenchymal stem cells visual function
下载PDF
Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration 被引量:2
3
作者 Christine Bojanic Kendrick To +2 位作者 Bridget Zhang Christopher Mak Wasim S Khan 《World Journal of Stem Cells》 SCIE CAS 2020年第4期288-302,共15页
BACKGROUND Peripheral nerve injury can occur as a result of trauma or disease and carries significant morbidity including sensory and motor loss.The body has limited ability for nerve regeneration and functional recov... BACKGROUND Peripheral nerve injury can occur as a result of trauma or disease and carries significant morbidity including sensory and motor loss.The body has limited ability for nerve regeneration and functional recovery.Left untreated,nerve lesions can cause lifelong disability.Traditional treatment options such as neurorrhaphy and neurolysis have high failure rates.Surgical reconstruction with autograft carries donor site morbidity and often provide suboptimal results.Mesenchymal stem cells(MSCs)are known to have promising regenerative potential and have gained attention as a treatment option for nerve lesions.It is however,unclear whether it can be effectively used for nerve regeneration.AIM To evaluate the evidence for the use of human umbilical cord derived MSCs(UCMSCs)in peripheral nerve regeneration.METHODS We carried out a systematic literature review in accordance with the PRISMA protocol.A literature search was performed from conception to September 2019 using PubMed,EMBASE and Web of Science.The results of eligible studies were appraised.A risk of bias analysis was carried out using Cochrane’s RoB 2.0 tool.RESULTS Fourteen studies were included in this review.A total of 279 subjects,including both human and animal were treated with UCMSCs.Four studies obtained UCMSCs from a third-party source and the remainder were harvested by the investigators.Out of the 14 studies,thirteen conducted xenogenic transplantation into nerve injury models.All studies reported significant improvement in nerve regeneration in the UCMSC treated groups compared with the various different controls and untreated groups.CONCLUSION The evidence summarised in this PRISMA systematic review of in vivo studies supports the notion that human UCMSC transplantation is an effective treatment option for peripheral nerve injury. 展开更多
关键词 umbilical cord mesenchymal stem cells TRANSPLANTATION PERIPHERAL NERVE regeneration
下载PDF
Zinc enhances the cell adhesion,migration,and self-renewal potential of human umbilical cord derived mesenchymal stem cells 被引量:2
4
作者 Iqra Sahibdad Shumaila Khalid +3 位作者 G Rasul Chaudhry Asmat Salim Sumreen Begum Irfan Khan 《World Journal of Stem Cells》 SCIE 2023年第7期751-767,共17页
BACKGROUND Zinc(Zn)is the second most abundant trace element after Fe,present in the human body.It is frequently reported in association with cell growth and proliferation,and its deficiency is considered to be a majo... BACKGROUND Zinc(Zn)is the second most abundant trace element after Fe,present in the human body.It is frequently reported in association with cell growth and proliferation,and its deficiency is considered to be a major disease contributing factor.AIM To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord(hUC)-derived mesenchymal stem cells(MSCs).METHODS hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry,immunophenotyping,and tri-lineage differentiation.The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay.To determine the effect of Zn on population doubling time(PDT),hUC-MSCs were cultured in media with and without Zn for several passages.An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs.A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs.Transcriptional analysis of genes involved in the cell cycle,proliferation,migration,and selfrenewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction.The protein expression of Lin28,a pluripotency marker,was analyzed by immunocytochemistry.RESULTS Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations(>100μM),showed concentration dependent cytotoxicity in hUC-MSCs.hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells.Zn also increased the cell adhesion rate,and colony forming efficiency(CFE).In addition,Zn upregulated the expression of genes involved in the cell cycle(CDC20,CDK1,CCNA2,CDCA2),proliferation(transforming growth factorβ1,GDF5,hypoxia-inducible factor 1α),migration(CXCR4,VCAM1,VEGF-A),and self-renewal(OCT4,SOX2,NANOG)of hUC-MSCs.Expression of Lin28 protein was significantly increased in cells treated with Zn.CONCLUSION Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT,and maintaining the CFE.Zn also enhances the cell adhesion,migration,and self-renewal of hUC-MSCs.These results highlight the essential role of Zn in cell growth and development. 展开更多
关键词 Human umbilical cord mesenchymal stem cells ZINC cell proliferation In vitro expansion
下载PDF
The Evaluation of Vision Related Quality of Life in Patients with Retinitis Pigmentosa after Suprachoroidal Umbilical Cord Derived Mesenchymal Stem Cell Treatment
5
作者 Neslihan Sinim Kahraman Ayse Oner 《Open Journal of Ophthalmology》 2021年第3期203-213,共11页
<strong>Background:</strong> The aim of this study was to evaluate vision related quality of life (VRQoL) in patients with retinitis pigmentosa (RP) after suprachoroidal umbilical cord derived mesenchymal ... <strong>Background:</strong> The aim of this study was to evaluate vision related quality of life (VRQoL) in patients with retinitis pigmentosa (RP) after suprachoroidal umbilical cord derived mesenchymal stem cell (UC-MSC) treatment. <strong>Methods:</strong> The patients were evaluated regarding to the VRQoL before the treatment and at the end of the first year. The study was performed in an affiliated hospital of a university between 2018 and 2020. The patients were operated by a single surgeon and evaluated at baseline and at first, sixth and twelfth month after stem cell implantation. To assess patients’ subjective visual situation, we used Impact of Vision Impairment (IVI) Profile 28-item questionnaire. It basically evaluated vision-related activities in three subscales: “reading and accessing information”, “mobility and independence” and “emotional well-being”. This test is established to assess VRQoL in low vision patients. <strong>Results:</strong> A total of 123 people, ranging in age from 18 to 48 years, participated in the study and 43.9% (n = 54) were women. The study patients were followed up for one year and the questionnaire was filled by patients at baseline and one year after surgery. In all groups, no difficulty was observed in understanding the questionnaire. The results showed significant improvements in VRQoL after stem cell treatment (p < 0.05). The analysis of each subscale score including “reading and accessing information”, “mobility and independence” and “emotional well-being” before and after treatment showed significant improvements in all subscale scores (p < 0.05). <strong>Conclusions:</strong> IVI 28 item questionnaire seems to be an effective test for the assessment of VRQoL in low vision patients. The suprachoroidal implantation of UC-MSC for the treatment of RP can improve the quality of life of these patients. 展开更多
关键词 stem cell Therapy Retinitis Pigmentosa umbilical cord derived Mesenchy-mal stem cells Vision Related Quality of Life
下载PDF
Human umbilical cord mesenchymal stem cell-derived exosomes loaded into a composite conduit promote functional recovery after peripheral nerve injury in rats 被引量:2
6
作者 Haoshuai Tang Junjin Li +6 位作者 Hongda Wang Jie Ren Han Ding Jun Shang Min Wang Zhijian Wei Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期900-907,共8页
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu... Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury. 展开更多
关键词 axon growth collagen EXOSOME human umbilical cord mesenchymal stem cells hyaluronic acid muscular atrophy nerve guidance conduits peripheral nerve regeneration
下载PDF
Therapeutic utility of human umbilical cord-derived mesenchymal stem cells-based approaches in pulmonary diseases:Recent advancements and prospects 被引量:1
7
作者 Min Meng Wei-Wei Zhang +2 位作者 Shuang-Feng Chen Da-Rui Wang Chang-Hui Zhou 《World Journal of Stem Cells》 SCIE 2024年第2期70-88,共19页
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle... Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application. 展开更多
关键词 Pulmonary diseases mesenchymal stem cells Human umbilical cord cell therapy Clinical trials
下载PDF
Human umbilical cord mesenchymal stem cells derivedexosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity
8
作者 Xiao-Tian Zhang Bo-Wen Zhao +1 位作者 Yuan-Long Zhang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1238-1247,共10页
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en... AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway. 展开更多
关键词 human umbilical cord mesenchymal stem cells retinal astrocytes retinopathy of prematurity vascular endothelial growth factor hypoxia inducible factor
下载PDF
MicroRNA-451 from Human Umbilical Cord-Derived Mesenchymal Stem Cell Exosomes Inhibits Alveolar Macrophage Autophagy via Tuberous Sclerosis Complex 1/Mammalian Target of Rapamycin Pathway to Attenuate Burn-Induced Acute Lung Injury in Rats
9
作者 Zhigang Jia Lin Li +5 位作者 Peng Zhao Guo Fei Shuangru Li Qinqin Song Guangpeng Liu Jisong Liu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第9期1030-1043,共14页
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan... Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI. 展开更多
关键词 Acute lung injury Human umbilical cord mesenchymal stem cell-derived exosomes MicroRNA-451 Tuberous sclerosis complex 1 Mammalian target of rapamycin pathway AUTOPHAGY
下载PDF
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
10
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy
11
作者 Lin Zhu Lu He +2 位作者 Wu Duan Bo Yang Ning Li 《World Journal of Stem Cells》 SCIE 2024年第6期728-738,共11页
BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms rema... BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets. 展开更多
关键词 Necrotizing enterocolitis AUTOPHAGY umbilical cord mesenchymal stem cell EXOSOMES Intestinal epithelial cell Intestinal barrier function
下载PDF
WJSC 6^(th) Anniversary Special Issues(2):Mesenchymal stem cells Umbilical cord-derived mesenchymal stem cells:Their advantages and potential clinical utility 被引量:46
12
作者 Tokiko Nagamura-Inoue Haiping He 《World Journal of Stem Cells》 SCIE CAS 2014年第2期195-202,共8页
Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to dif... Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to differentiate into three germ layers,to accumulate in damaged tissue or inflamed regions,to promote tissue repair,and to modulate immune response.There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC,such as Wharton’s jelly,vein,arteries,UC lining and subamnion and perivascular regions.In this review,we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy. 展开更多
关键词 umbilical cord mesenchymal stem cells Wharton’s JELLY MULTIPOTENCY Immunotherapy
下载PDF
Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation 被引量:36
13
作者 Chang Dong LI Wei Yuan ZHANG +4 位作者 He Lian LI Xiao Xia JIANG Yi ZHANG Pei Hsien TANG Ning MAO 《Cell Research》 SCIE CAS CSCD 2005年第7期539-547,共9页
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical... Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients. 展开更多
关键词 mesenchymal stem cells human placenta umbilical cord blood immune regulation.
下载PDF
Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves 被引量:4
14
作者 Mi-Ae Sung Hun Jong Jung +7 位作者 Jung-Woo Lee Jin-Yong Lee Kang-Mi Pang Sang Bae Yoo Mohammad S. Alrashdan Soung-Min Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第26期2018-2027,共10页
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d... Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells sciatic nerve crush injury FLUOROGOLD stem cells peripheral nerve regeneration REGENERATION neural regeneration
下载PDF
Human mesenchymal stem cells derived from umbilical cord and bone marrow exert immunomodulatory effects in different mechanisms 被引量:9
15
作者 Yunejin Song Jung-Yeon Lim +8 位作者 Taekyu Lim Keon-Il Im Nayoun Kim Young-Sun Nam Young-Woo Jeon Jong Chul Shin Hyun Sun Ko In Yang Park Seok-Goo Cho 《World Journal of Stem Cells》 SCIE CAS 2020年第9期1032-1049,共18页
BACKGROUND Mesenchymal stem cells(MSCs)are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties.Although human bone marrow-derived MSCs(BM-MSCs)were the most widely... BACKGROUND Mesenchymal stem cells(MSCs)are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties.Although human bone marrow-derived MSCs(BM-MSCs)were the most widely used MSCs in cell therapy until recently,MSCs derived from human umbilical cords(UC-MSCs)have gained popularity as cell therapy material for their ethical and noninvasive collection.AIM To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs.METHODS To analyze soluble factors expressed by MSCs,such as indolamine 2,3-dioxygenase,cyclooxygenase-2,prostaglandin E2 and interleukin(IL)-6,inflammatory environments in vitro were reconstituted with combinations of interferon-gamma(IFN-γ),tumor necrosis factor alpha and IL-1βor with IFN-γalone.Activated T cells were cocultured with MSCs treated with indomethacin and/or anti-IL-10.To assess the ability of MSCs to inhibit T helper 17 cells and induce regulatory T cells,induced T helper 17 cells were cocultured with MSCs treated with indomethacin or anti-IL-10.Xenogeneic graft-versus-host disease was induced in NOG mice(NOD/Shi-scid/IL-2Rγnull)and UC-MSCs or BM-MSCs were treated as cell therapies.RESULTS Our data demonstrated that BM-MSCs and UC-MSCs shared similar phenotypic characteristics and immunomodulation abilities.BM-MSCs expressed more indolamine 2,3-dioxygenase after cytokine stimulation with different combinations of IFN-γ,tumor necrosis factor alpha-αand IL-1βor IFN-γalone.UC-MSCs expressed more prostaglandin E2,IL-6,programmed death-ligand 1 and 2 in the in vitro inflammatory environment.Cyclooxygenase-2 and IL-10 were key factors in the immunomodulatory mechanisms of both MSCs.In addition,UC-MSCs inhibited more T helper 17 cells and induced more regulatory T cells than BM-MSCs.UC-MSCs and BM-MSCs exhibited similar effects on attenuating graft-versus-host disease.CONCLUSION UC-MSCs and BM-MSCs exert similar immunosuppressive effects with different mechanisms involved.These findings suggest that UC-MSCs have distinct immunoregulatory functions and may substitute BM-MBSCs in the field of cell therapy. 展开更多
关键词 mesenchymal stem cells Graft-versus-host disease umbilical cord cell therapy Xenogeneic mouse model IMMUNOMODULATION
下载PDF
Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction 被引量:4
16
作者 Jianjun Li Dong Li +3 位作者 Xiuli Ju Qing Shi Dakun Wang Fengcai Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2663-2672,共10页
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilic... The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tujl, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities. 展开更多
关键词 umbilical cord mesenchymal stem cell IMMUNOMODULATION oxidative stress neural induction neural regeneration
下载PDF
Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation 被引量:3
17
作者 Hongtao Zhang Huilin Yang +1 位作者 Huanxiang Zhang Jing Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期165-170,共6页
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri... BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments. 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells nerve growth factor brain-derived neurotrophic factor INTERLEUKIN-8 spinal cord injury neural stem cells neural regeneration
下载PDF
Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance the Osteoblastic Differentiation of Periodontal Ligament Stem Cells Under High Glucose Conditions Through the PI3K/AKT Signaling Pathway 被引量:5
18
作者 YANG Shuo ZHU Biao +4 位作者 TIAN Xiao Yu YU Han Ying QIAO Bo ZHAO Li Sheng ZHANG Bin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第9期811-820,共10页
Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application p... Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application prospects in tissue healing.The current study aimed to explore whether hUCMSC-exo could promote the osteogenic differentiation of hPDLSCs under HG conditions and the underlying mechanism.Methods We used a 30 mmol/L glucose concentration to simulate HG conditions.CCK-8 assay was performed to evaluate the effect of hUCMSC-exo on the proliferation of hPDLSCs.Alkaline phosphatase(ALP)staining,ALP activity,and qRT-PCR were performed to evaluate the pro-osteogenic effect of hUCMSC-exo on hPDLSCs.Western blot analysis was conducted to evaluate the underlying mechanism.Results The results of the CCK-8 assay,ALP staining,ALP activity,and qRT-PCR assay showed that hUCMSC-exo significantly promoted cell proliferation and osteogenic differentiation in a dosedependent manner.The Western blot results revealed that hUCMSC-exo significantly increased the levels of p-PI3K and p-AKT in cells,and the effect was inhibited by LY294002(PI3K inhibitor)or MK2206(AKT inhibitor),respectively.Moreover,the increases in osteogenic indicators induced by hUCMSC-exo were significantly suppressed by LY294002 and MK2206.Conclusion hUCMSC-exo promote the osteogenic differentiation of hPDLSCs under HG conditions through the PI3K/AKT signaling pathway. 展开更多
关键词 EXOSOMES Human umbilical cord mesenchymal stem cell Periodontal ligament stem cell Osteogenic differentiation High glucose PI3K/AKT
下载PDF
Prospects for the therapeutic development of umbilical cord bloodderived mesenchymal stem cells 被引量:5
19
作者 Soyoun Um Jueun Ha +2 位作者 Soo Jin Choi Wonil Oh Hye Jin Jin 《World Journal of Stem Cells》 SCIE 2020年第12期1511-1528,共18页
Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high lat... Umbilical cord blood(UCB)is a primitive and abundant source of mesenchymal stem cells(MSCs).UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders.Despite the high latent selfrenewal and differentiation capacity of these cells,the safety,efficacy,and yield of MSCs expanded for ex vivo clinical applications remains a concern.However,immunomodulatory effects have emerged in various disease models,exhibiting specific mechanisms of action,such as cell migration and homing,angiogenesis,anti-apoptosis,proliferation,anti-cancer,anti-fibrosis,anti-inflammation and tissue regeneration.Herein,we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies,and discuss the concerns regarding the safety and mass production issues in future applications. 展开更多
关键词 umbilical cord blood mesenchymal stem cell stem cell therapy IMMUNOMODULATION Regenerative medicine Therapeutic cell manufacturing processing
下载PDF
Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury 被引量:24
20
作者 Hai-xiao Zhou Zhi-gang Liu +1 位作者 Xiao-jiao Liu Qian-xue Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期107-113,共7页
Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjuncti... Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid(2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. 展开更多
关键词 nerve regeneration traumatic brain injury umbilical cord mesenchymal stem cells transplantation hyperbaric oxygen rats craniocerebral trauma neurological function neural regeneration
下载PDF
上一页 1 2 205 下一页 到第
使用帮助 返回顶部