An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are ...Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard ...Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard based on an updated database.Four assessment indexes are used in the model,which are the dynamic failure duration(DT),elastic energy index(WET),impact energy index(KE)and uniaxial compressive strength(RC).Four membership functions,including linear(L),parabolic(P),S and Weibull(W)functions,are proposed to measure the uncertainty level of individual index.The corresponding weights are determined through information entropy(EN),analysis hierarchy process(AHP)and synthetic weights(CW).Simultaneously,the classification criteria,including unascertained cluster(UC)and credible identification principle(CIP),are analyzed.The combination algorithm,consisting of P function,CW and CIP(P-CW-CIP),is selected as the optimal classification model in function of theory analysis and to train the samples.Ultimately,the established ensemble model is further validated through test samples with 100%accuracy.The results reveal that the hybrid model has a great potential in the coal burst hazard evaluation in underground coal mines.展开更多
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金the National Natural Science Foundation of China(50490274)Mittal Innovative and Enterprising Project at Center South University(07MX14)
文摘Based on optimized forecast method of unascertained classifying,a unascer- tained measurement classifying model (UMC) to predict mining induced goaf collapse was established,The discriminated factors of the model are influential factors including over- burden layer type,overburden layer thickness,the complex degree of geologic structure, the inclination angle of coal bed,volume rate of the cavity region,the vertical goaf depth from the surface and space superposition layer of the goaf region.Unascertained mea- surement (UM) function of each factor was calculated.The unascertained measurement to indicate the classification center and the grade of waiting forecast sample was determined by the UM distance between the synthesis index of waiting forecast samples and index of every classification.The training samples were tested by the established model,and the correct rate is 100%.Furthermore,the seven waiting forecast samples were predicted by the UMC model.The results show that the forecast results are fully consistent with the ac- tual situation.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金funded by the National Science Foundation of China(Nos.72088101 and 41807259)the Innovation-Driven Project of Central South University(No.2020CX040)the Shenghua Lieying Program of Central South University(Principle Investigator:Dr.Jian Zhou)。
文摘Coal burst is a severe hazard that can result in fatalities and damage of facilities in underground coal mines.To address this issue,a robust unascertained combination model is proposed to study the coal burst hazard based on an updated database.Four assessment indexes are used in the model,which are the dynamic failure duration(DT),elastic energy index(WET),impact energy index(KE)and uniaxial compressive strength(RC).Four membership functions,including linear(L),parabolic(P),S and Weibull(W)functions,are proposed to measure the uncertainty level of individual index.The corresponding weights are determined through information entropy(EN),analysis hierarchy process(AHP)and synthetic weights(CW).Simultaneously,the classification criteria,including unascertained cluster(UC)and credible identification principle(CIP),are analyzed.The combination algorithm,consisting of P function,CW and CIP(P-CW-CIP),is selected as the optimal classification model in function of theory analysis and to train the samples.Ultimately,the established ensemble model is further validated through test samples with 100%accuracy.The results reveal that the hybrid model has a great potential in the coal burst hazard evaluation in underground coal mines.