To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m...To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.展开更多
About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity...About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.展开更多
Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes alon...Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.展开更多
This paper presents the coucept of general and sensitive dimension, and also proposes the calculation formula of the general dimension least squares method. By calculating and analyzing the power spectrum and general ...This paper presents the coucept of general and sensitive dimension, and also proposes the calculation formula of the general dimension least squares method. By calculating and analyzing the power spectrum and general dimension from the fault sample, the relationship is achieved between sample status and the general dimension from vibration signals of the equipment so as to provide reference to fault diagnosis. Furthermore, a correlation function of general dimension is proposed, and calculations are carried out for a monitor signal and samples signal. The diagnosis method based on fractal theory is effective through the concrete examples of the steam electric generating set fault diagnosis, and the correlation coefficient of general dimension between a monitor signal and samples signal can improve the accuracy for fault diagnosis.展开更多
Although mechanical vibration is extremely complicated, each fault signal produced by it has its own inherent features, The distinction may be most prominent between the certain components hidden in those features and...Although mechanical vibration is extremely complicated, each fault signal produced by it has its own inherent features, The distinction may be most prominent between the certain components hidden in those features and the same components of normal signals. Three-order cumulant can reduce the Gaussian background noise automatically and its complex formal includes different coupling information of its signal. In the experiment, through these different coupling modes, the same coupling components are fetched from specific fault signal and normal signal, then these components are used to diagnose that certain fault. The results show that the method can fetch the most prominent distinction between normal signal and the specific fault signal, so the specific fault diagnosis by this method is satisfactory.展开更多
The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained ...The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.展开更多
In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/re...In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study.展开更多
The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt a...The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt and foreland basin, strike-slip orogenic belt and strike-slip basin and so on. Fault chains are the key for these couplings and there are typical examples for all these cases. The North China down-faulted basin is coupled west with the Taihang uplift, east with the Jiao-Liao Mountains, north with the Yanshan orogenic belt and south with the Dabie orogenic belt, that is to say, the central down-faulted basin and the surrounding orogenic belts bear a coupling relation within a uniform dynamistic system. Study shows that the central down-faulted basin and the North China mantle sub-plume structure have a close relation during their formation. Owing to intensive mantle sub-plume uplifting, the bottom of the lithosphere suffered from resistance, which caused the lithosphere of the eastern North China to be heated, thinned and fault-depressed. Meanwhile, mantle rocks that were detached outwards in the shape of mushroom was dissected by surrounding ductile shearing zones, which lead to decompression and unloading to generate hypomagmas, and a series of mantle-branch structures were formed around the down-faulted basin. There is an obvious comparability among these mantle branch structures (orogenic belts), and they have basin-range coupling relations with the central down-faulted basins.展开更多
The reliability analysis of coupled faults may be difficult due to its properties of multiple and intermittent. The challenge is to find the rule and depict of the cross-linking relationship by mathematical model. The...The reliability analysis of coupled faults may be difficult due to its properties of multiple and intermittent. The challenge is to find the rule and depict of the cross-linking relationship by mathematical model. The method in this study was developed around the Cellular Automata( CA) with a novel neighborhood definition and the structure of network model to build the failure cellular automata. And the simulation of the coupled faults influence combined with the importance evaluation method of network node to find the most critical faults which were beneficial to improve the design,without consuming massive computational overhead.展开更多
Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method t...Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method to the three order cumulants of coupled signals is adopted. By using the differential of complex three order cumulants before and after respectively, then their ?dimensional spectrum is calculated, and the results are used to fault diagnosis. The experimental results show that, the increase frequency item in three order cumulants after differentiated impacts on the results of fault diagnosis and the degree of effection is relative to the differential times. And the correct rate of fault diagnosis can be raised by changing the differential times of three order cumulants.展开更多
The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is a...The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors.展开更多
The three-order cumulants’ complex forms of different definitions include different coupling information of signals, and the information can be used to diagnose fault. In the experiment of pressure reducing valve’s ...The three-order cumulants’ complex forms of different definitions include different coupling information of signals, and the information can be used to diagnose fault. In the experiment of pressure reducing valve’s fault diagnosis, through these different coupling information, the features of fault signals and normal signals were extracted by wavelet in different directions, then these features were inputted to diagnose the fault. The experiment shows that this method can achieve a satisfactory result.展开更多
Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is est...Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is established and described in this paper. An example is presented for the Shuikoushan deposit, Hunan. The results of dynamic simulation indicate that the evolution and magnitude of fracture permeability of different rocks are different, and that faulting can enhance the spatial heterogeneity of rock permeability and facilitate fluid flow and mineralization in local fault zone. The pressure for a fault usually shows a variation mode of aperiodic oscillation with time, which reflects the chaotic behavior of the evolution of a fault.展开更多
Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring ...Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.展开更多
The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in t...The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in the Qaidam and ad jacent mountain belts, controlling the development and evolution of the Qaidam b asin. These fault systems are: (1)north Qaidam Qilian Mountain fault system; (2 ) south Qaidam East Kunlun Mountain fault system; (3)Altun strike slip fault s ystem; (4)Elashan strike slip fault system, and (5) Gansen Xiaochaidan fault s ystem. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basi n, the migration of depocenters and the distribution of hydrocarbon accumulation belt.展开更多
This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator...This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.展开更多
基金financially supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)。
文摘To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.
基金Supported by the National Basic Research Program of China (2010CB226800) the National Natural Science Foundation of China (50904065) the Program for New Century Excellent Talents in University (NCET-09-0728)
文摘About 75% water-inrush accidents in China are caused by geological structure such as faults, therefore, it is necessary to investigate the water-inrush mechanism of faults to provide references for the mining activity above confined water. In this paper, based on the fluid-solid coupling theory, we built the stress-seepage coupling model for rock, then we combined with an example of water-inrush caused by fault, studied the water-inrush mechanism by using the numerical software COMSOL Mutiphysics, analyzed the change rule of shear stress, vertical stress, plastic area and water pressure for stope with a fault, and estimated the water-inrush risk at the different distances between working faces and the fault. The numerical simula- tion results indicate that: (1) the water-inrush risk will grow as the decrease of the distance between working face and the fault; (2) the failure mode of the rock in floor with fault is shear failure; (3) the rock between water-containing fault and working face failure is the reason for water-inrush.
文摘Deca</span><span style="font-family:Verdana;">dal forerunning seismic activity is examined for very large, shall</span><span style="font-family:Verdana;">ow earthquakes along strike-slip and intraplate faults of the world. It includes forerunning shocks of magnitude Mw ≥ 5.0 for 21 mainshocks of Mw 7.5 to 8.6 from 1989 to 2020. Much forerunning activity occurred at what are interpreted to be smaller asperities along the peripheries of the rupture zones of great mainshocks at transform faults and subduction zones. Several great asperities as ascertained from forerunning activity agree with the areas of high seism</span><span style="font-family:Verdana;">ic slip as determined by others using geodetic, mapping of surf</span><span style="font-family:Verdana;">ace faulting, and finite-source seismic modeling. The zones of high slip in many great earthquakes were nearly quiescent beforehand and are identified as the sites of great asperities. Asperities are strong, well-coupled portions of plate interfaces. Different patterns of forerunning activity on time scales of up to 45 years are attributed to the sizes and spacing of asperities (or lack of). This permits at least some great asperities along transform faults to be mapped decades before they rupture in great shocks. Rupture zones of many great mainshocks along transform faults are bordered either along strike, at depth or regionally by zones of lower plate coupling including either fault creep</span></span><span style="font-family:""> </span><span style="font-family:Verdana;"> forerunning activity, aftershocks and/or slow-slip events. Forerunning activity to transforms in continental areas is more widespread spatially than that adjacent to oceanic transforms. The parts of the San Andreas fault themselves that ruptured in great California earthquakes during 1812, 1857 and 1906 have been very quiet since 1920;moderate to large shocks have been concentrated on their peripheries. The intraplate shocks studied, however, exhibited few if any forerunning events, which is attributed to the short period of time studied compared to their repeat times. The detection of forerunning and precursory activities for various time scales should be sought on the peripheries of great asperities and not just along the major faults themselves. This paper compliments that on decadal forerunning activity to great and giant earthquakes along subduction zones.
文摘This paper presents the coucept of general and sensitive dimension, and also proposes the calculation formula of the general dimension least squares method. By calculating and analyzing the power spectrum and general dimension from the fault sample, the relationship is achieved between sample status and the general dimension from vibration signals of the equipment so as to provide reference to fault diagnosis. Furthermore, a correlation function of general dimension is proposed, and calculations are carried out for a monitor signal and samples signal. The diagnosis method based on fractal theory is effective through the concrete examples of the steam electric generating set fault diagnosis, and the correlation coefficient of general dimension between a monitor signal and samples signal can improve the accuracy for fault diagnosis.
文摘Although mechanical vibration is extremely complicated, each fault signal produced by it has its own inherent features, The distinction may be most prominent between the certain components hidden in those features and the same components of normal signals. Three-order cumulant can reduce the Gaussian background noise automatically and its complex formal includes different coupling information of its signal. In the experiment, through these different coupling modes, the same coupling components are fetched from specific fault signal and normal signal, then these components are used to diagnose that certain fault. The results show that the method can fetch the most prominent distinction between normal signal and the specific fault signal, so the specific fault diagnosis by this method is satisfactory.
基金Project(61771085)supported by the National Natural Science Foundation of ChinaProject(KJQN 201900601)supported by the Research Project of Chongqing Educational Commission,China。
文摘The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.
基金China Seismological Bureau during the "Ninth Five-Year Plan" period!Key Project(95-04-08-02)
文摘In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study.
基金supported by the National Natural Science Foundation of China(grants 40272088,40072073)the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX1-07)the Project of Large scale Geological Survey in China(200110200038).
文摘The basin-range coupling relation is a leading subject of the modern geology. In geometry, relations of this type include couplings between stretched orogenic belt and down-faulted basin, compressional orogenic belt and foreland basin, strike-slip orogenic belt and strike-slip basin and so on. Fault chains are the key for these couplings and there are typical examples for all these cases. The North China down-faulted basin is coupled west with the Taihang uplift, east with the Jiao-Liao Mountains, north with the Yanshan orogenic belt and south with the Dabie orogenic belt, that is to say, the central down-faulted basin and the surrounding orogenic belts bear a coupling relation within a uniform dynamistic system. Study shows that the central down-faulted basin and the North China mantle sub-plume structure have a close relation during their formation. Owing to intensive mantle sub-plume uplifting, the bottom of the lithosphere suffered from resistance, which caused the lithosphere of the eastern North China to be heated, thinned and fault-depressed. Meanwhile, mantle rocks that were detached outwards in the shape of mushroom was dissected by surrounding ductile shearing zones, which lead to decompression and unloading to generate hypomagmas, and a series of mantle-branch structures were formed around the down-faulted basin. There is an obvious comparability among these mantle branch structures (orogenic belts), and they have basin-range coupling relations with the central down-faulted basins.
文摘The reliability analysis of coupled faults may be difficult due to its properties of multiple and intermittent. The challenge is to find the rule and depict of the cross-linking relationship by mathematical model. The method in this study was developed around the Cellular Automata( CA) with a novel neighborhood definition and the structure of network model to build the failure cellular automata. And the simulation of the coupled faults influence combined with the importance evaluation method of network node to find the most critical faults which were beneficial to improve the design,without consuming massive computational overhead.
文摘Complex three-order cumulant has different definition forms. Different forms conclude different information. For studying the effection of frequency in the coupled signals to fault diagnosis, the differential method to the three order cumulants of coupled signals is adopted. By using the differential of complex three order cumulants before and after respectively, then their ?dimensional spectrum is calculated, and the results are used to fault diagnosis. The experimental results show that, the increase frequency item in three order cumulants after differentiated impacts on the results of fault diagnosis and the degree of effection is relative to the differential times. And the correct rate of fault diagnosis can be raised by changing the differential times of three order cumulants.
文摘The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors.
文摘The three-order cumulants’ complex forms of different definitions include different coupling information of signals, and the information can be used to diagnose fault. In the experiment of pressure reducing valve’s fault diagnosis, through these different coupling information, the features of fault signals and normal signals were extracted by wavelet in different directions, then these features were inputted to diagnose the fault. The experiment shows that this method can achieve a satisfactory result.
基金Supported by National Natural Science Foundation of China(61174121, 61121003, 61203083) the Research Fund for the Doctoral Program of Higher Education of China Doctoral Foundation of University of Jinan (XBS1242)
基金supported by the National Natural Science Foundation of China(Gramt No.70171057 and No.49702024)a Key Project of the Ninth Five-Year Plan of the Chinese Academof Sciences(Grant No.KZ952-S1-402).
文摘Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is established and described in this paper. An example is presented for the Shuikoushan deposit, Hunan. The results of dynamic simulation indicate that the evolution and magnitude of fracture permeability of different rocks are different, and that faulting can enhance the spatial heterogeneity of rock permeability and facilitate fluid flow and mineralization in local fault zone. The pressure for a fault usually shows a variation mode of aperiodic oscillation with time, which reflects the chaotic behavior of the evolution of a fault.
基金supported by National Key R&D Program of China (No.2022YFB3303600)the Fundamental Research Funds for the Central Universities (No.2022CDJKYJH048).
文摘Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis.
文摘The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in the Qaidam and ad jacent mountain belts, controlling the development and evolution of the Qaidam b asin. These fault systems are: (1)north Qaidam Qilian Mountain fault system; (2 ) south Qaidam East Kunlun Mountain fault system; (3)Altun strike slip fault s ystem; (4)Elashan strike slip fault system, and (5) Gansen Xiaochaidan fault s ystem. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basi n, the migration of depocenters and the distribution of hydrocarbon accumulation belt.
基金supported by the National Natural Science Foundation of China(6117412161121003+2 种基金61203083)the Research Fund for the Doctoral Program of Higher Education of Chinathe Doctoral Foundation of University of Jinan(XBS1242)
文摘This paper deals with the problem of optimal fault detection filter (FDF) design for a class of discrete-time switched linear systems under arbitrary switching. By using an observer-based FDF as a residual generator, the design of the FDF is formulated into an optimization problem through maximizing the H_/H∞ or H∞/H∞ performance index. With the aid of an operator optimization method, it is shown that a mode-dependent unified optimal solution can be derived by solving a coupled Riccati equation. A numerical example is given to show the effectiveness of the proposed method.