A novel fuzzy support vector machine based on unbalanced samples(FSVM-US)is proposed to solve the high false positive rate problem since the gyroscope output is susceptible to unmanned aerial vehicle(UAV)airborne elec...A novel fuzzy support vector machine based on unbalanced samples(FSVM-US)is proposed to solve the high false positive rate problem since the gyroscope output is susceptible to unmanned aerial vehicle(UAV)airborne electromagnetic environment and the gyroscope abnormal signal sample is rather rare.Firstly,the standard deviation of samples projection to normal vector for SVM classifier hyper plane is analyzed.The imbalance feature expression reflecting the hyper plane shift for the number imbalance between samples and the dispersion imbalance within samples is derived.At the same time,the denoising factor is designed as the exponential decay function based on the Euclidean distance between each sample and the class center.Secondly,the imbalance feature expression and denoising factor are configured into the membership function.Each sample has its own weight denoted the importance to the classifier.Finally,the classification simulation experiments on the gyroscope fault diagnosis system are conducted and FSVM-US is compared with the standard SVM,FSVM,and the four typical class imbalance learning(CIL)methods.The results show that FSVM-US classifier accuracy is 12% higher than that of the standard SVM.Generally,FSVM-US is superior to the four CIL methods in total performance.Moreover,the FSVMUS noise tolerance is also 17% higher than that of the standard SVM.展开更多
The high similarity of shellfish images and unbalanced samples are key factors affecting the accuracy of shellfish recognition.This study proposes a new shellfish recognition method FL_Net based on a Convolutional Neu...The high similarity of shellfish images and unbalanced samples are key factors affecting the accuracy of shellfish recognition.This study proposes a new shellfish recognition method FL_Net based on a Convolutional Neural Network(CNN).We first establish the shellfish image(SI)dataset with 68 species and 93574 images,and then propose a filter pruning and repairing model driven by an output entropy and orthogonality measurement for the recognition of shellfish with high similarity features to improve the feature expression ability of valid information.For the shellfish recognition with unbalanced samples,a hybrid loss function,including regularization term and focus loss term,is employed to reduce the weight of easily classified samples by controlling the shared weight of each sample species to the total loss.The experimental results show that the accuracy of shell-fish recognition of the proposed method is 93.95%,13.68%higher than the benchmark network(VGG16),and the accuracy of shellfish recognition is improved by 0.46%,17.41%,17.36%,4.46%,1.67%,and 1.03%respectively compared with AlexNet,GoogLeNet,ResNet50,SN_Net,MutualNet,and ResNeSt,which are used to verify the efficiency of the proposed method.展开更多
基金supported by the Fundamental Research Fund for the Central Universities(No.56XZA12017)
文摘A novel fuzzy support vector machine based on unbalanced samples(FSVM-US)is proposed to solve the high false positive rate problem since the gyroscope output is susceptible to unmanned aerial vehicle(UAV)airborne electromagnetic environment and the gyroscope abnormal signal sample is rather rare.Firstly,the standard deviation of samples projection to normal vector for SVM classifier hyper plane is analyzed.The imbalance feature expression reflecting the hyper plane shift for the number imbalance between samples and the dispersion imbalance within samples is derived.At the same time,the denoising factor is designed as the exponential decay function based on the Euclidean distance between each sample and the class center.Secondly,the imbalance feature expression and denoising factor are configured into the membership function.Each sample has its own weight denoted the importance to the classifier.Finally,the classification simulation experiments on the gyroscope fault diagnosis system are conducted and FSVM-US is compared with the standard SVM,FSVM,and the four typical class imbalance learning(CIL)methods.The results show that FSVM-US classifier accuracy is 12% higher than that of the standard SVM.Generally,FSVM-US is superior to the four CIL methods in total performance.Moreover,the FSVMUS noise tolerance is also 17% higher than that of the standard SVM.
基金the joint support of the National Key R&D Program Blue Granary Technology Innovation Key Special Project(2020YFD0900204)the Yantai Key R&D Project(2019XDHZ084).
文摘The high similarity of shellfish images and unbalanced samples are key factors affecting the accuracy of shellfish recognition.This study proposes a new shellfish recognition method FL_Net based on a Convolutional Neural Network(CNN).We first establish the shellfish image(SI)dataset with 68 species and 93574 images,and then propose a filter pruning and repairing model driven by an output entropy and orthogonality measurement for the recognition of shellfish with high similarity features to improve the feature expression ability of valid information.For the shellfish recognition with unbalanced samples,a hybrid loss function,including regularization term and focus loss term,is employed to reduce the weight of easily classified samples by controlling the shared weight of each sample species to the total loss.The experimental results show that the accuracy of shell-fish recognition of the proposed method is 93.95%,13.68%higher than the benchmark network(VGG16),and the accuracy of shellfish recognition is improved by 0.46%,17.41%,17.36%,4.46%,1.67%,and 1.03%respectively compared with AlexNet,GoogLeNet,ResNet50,SN_Net,MutualNet,and ResNeSt,which are used to verify the efficiency of the proposed method.