期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Analytical and Numerical Models to Predict the Behavior of Unbonded Flexible Risers Under Torsion 被引量:4
1
作者 任少飞 薛鸿祥 唐文勇 《China Ocean Engineering》 SCIE EI CSCD 2016年第2期243-256,共14页
This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and ... This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion.The analytical model takes local bending and torsion of tensile armor wires into consideration,and equilibrium equations of forces and displacements of layers are deduced.The numerical model includes lay angle,cross-sectional profiles of carcass,pressure armor layer and contact between layers.Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities.Results show that local bending and torsion of helical strips may have great influence on torsional stiffness,but stress related to bending and torsion is negligible;the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress;hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model,which cannot be predicted by analytical model because of the ignorance of friction between layers. 展开更多
关键词 unbonded flexible riser TORSION tensile armor layers anti-friction tapes load distribution QUASI-STATIC
下载PDF
Enhanced Multi-Layer Fatigue-Analysis Approach for Unbonded Flexible Risers 被引量:4
2
作者 杨和振 姜豪 杨启 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期363-379,共17页
This paper proposes an enhanced approach for evaluating the fatigue life of each metallic layer of unbonded flexible risers. Owing to the complex structure of unbonded flexible risers and the nonlinearity of the syste... This paper proposes an enhanced approach for evaluating the fatigue life of each metallic layer of unbonded flexible risers. Owing to the complex structure of unbonded flexible risers and the nonlinearity of the system, particularly in the critical touchdown zone, the traditional method is insufficient for accurately evaluating the fatigue life of these risers. The main challenge lies in the transposition from global to local analyses, which is a key stage for the fatigue analysis of flexible pipes owing to their complex structure. The new enhanced approach derives a multi-layer stress-decomposition method to meet this challenge. In this study, a numerical model validated experimentally is used to demonstrate the accuracy of the stress-decomposition method. And a numerical case is studied to validate the proposed approach. The results demonstrate that the multi-layer stress-decomposition method is accurate, and the fatigue lives of the metallic layers predicted by the enhanced multi-layer analysis approach are rational. The proposed fatigue-analysis approach provides a practical and reasonable method for predicting fatigue life in the design of unbonded flexible risers. 展开更多
关键词 unbonded flexible riser dynamic analysis FATIGUE finite element method
下载PDF
Behavior of Unbonded Flexible Risers Subject to Axial Tension 被引量:2
3
作者 任少飞 唐文勇 郭晋挺 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期249-258,共10页
Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid... Owing to nonlinear contact problems with slip and friction, a lot of limiting assumptions are made when developing analytical models to simulate the behavior of an unbonded flexible riser. Meanwhile, in order to avoid convergence problems and excessive calculating time associated with running the detailed finite element (FE) model of an unbonded flexible riser, interlocked carcass and zeta layers with complicated cross section shapes are replaced by simple geometrical shapes (e.g. hollow cylindrical shell) with equivalent orthotropic materials. But the simplified model does not imply the stresses equivalence of these two layers. To solve these problems, based on ABAQUS/Explicit, a numerical method that is suitable for the detailed FE model is proposed. In consideration of interaction among all component layers, the axial stiffness of an eight-layer unbonded flexible riser subjected to axial tension is predicted. Compared with analytical and experimental results, it is shown that the proposed numerical method not only has high accuracy but also can substantially reduce the calculating time. In addition, the impact of the lay angle of helical tendons on axial stiffness is discussed. 展开更多
关键词 unbonded flexible risers axis stiffness QUASI-STATIC contact FRICTION
下载PDF
Helical Wire Stress Analysis of Unbonded Flexible Riser Under Irregular Response 被引量:1
4
作者 Kunpeng Wang Chunyan Ji 《Journal of Marine Science and Application》 CSCD 2017年第2期208-215,共8页
A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction ... A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire. 展开更多
关键词 unbonded flexible RISER interlayer interaction HELICAL WIRE stress local flexure bending stiffness variation IRREGULAR RESPONSE
下载PDF
Lateral load performance and seismic demand of unbonded scrap tire rubber pad base isolators 被引量:1
5
作者 M.B.Zisan A.Igarashi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期803-821,共19页
The scrap tire rubber pad(STRP)made by natural or synthetic rubber and high strength reinforcing cords exhibits substantial vertical stiffness and horizontal flexibility,and these properties can be regarded as suitabl... The scrap tire rubber pad(STRP)made by natural or synthetic rubber and high strength reinforcing cords exhibits substantial vertical stiffness and horizontal flexibility,and these properties can be regarded as suitable for seismic isolators for structures.The use of environmentally burdensome scrap tires as STRP isolators might be convenient as an efficient and low-cost solution for the implementation of aseismic design philosophy for low-to-medium rise buildings,especially in developing countries.Finite element analyses of unbonded square and strip-shaped STRP isolators subjected to a combination of axial and lateral loads are conducted to investigate its lateral deformation performance under seismic loading.The rubber of the isolator is modelled with Mooney-Rivlin hyperelastic and Prony viscoelastic materials,including the Mullins material damage effect.The influence of the length-to-width ratio and bearing height on the isolator performance is assessed in terms of the force-displacement relationship,horizontal stiffness,damping,and isolation periods.It is shown that the dependence of stiffness on the length-to-width ratio is significant in the longitudinal direction and minor in the transverse direction.The STRP isolators following the proposed design criteria are shown to satisfy the performance requirement at different levels of seismic demand specified by the ASCE/SEI 7-2010 seismic provisions. 展开更多
关键词 lateral load STRP isolator length-to-width ratio HEIGHT unbonded application performance-based design FEM
下载PDF
Fatigue Behavior of Unbonded Partially Prestressed Concrete Beams with Flexure
6
作者 Song, YP Che, HM Yi, W 《China Ocean Engineering》 SCIE EI 1997年第2期225-234,共10页
A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the... A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented. 展开更多
关键词 fatigue behavior unbonded partially prestressed concrete BEAM
下载PDF
Ultimate stress increase in unbonded tendons in prestressed concrete beams 被引量:2
7
作者 Wen-zhong ZHENG Xiao-dong WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第12期998-1014,共17页
Since the assumption of plane sections cannot be applied to the strain of unbonded tendons in prestressed concrete beams subjected to loadings,a moment-curvature nonlinear analysis method is used to develop analytical... Since the assumption of plane sections cannot be applied to the strain of unbonded tendons in prestressed concrete beams subjected to loadings,a moment-curvature nonlinear analysis method is used to develop analytical programs from stress increases in unbonded tendons at the ultimate limit state.Based on the results of model testing and simulation analysis,equations are proposed to predict the stress increase in tendons at the ultimate state in simple or continuous beams of partially prestressed concrete,considering the loading type,non-prestressed reinforcement index βp,prestressing reinforcement index βs,and span-depth ratio L/h as the basic parameters.Results of 380 beams studied here and test results for 35 simple beams obtained by the China Academy of Building Research were compared with those from prediction equations given in codes and other previous studies.The comparison reveals that the values predicted by the proposed equations agree well with experimental results. 展开更多
关键词 Ultimate stress increase unbonded tendons Loading type Non-prestressed reinforcement index Prestressed reinforcement index Span-depth ratio
原文传递
Coupled Element Modeling Scheme for the Global Dynamic Analysis of Unbonded Flexible Risers 被引量:1
8
作者 杨和振 姜豪 +1 位作者 杨启 丁金鸿 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第2期234-242,共9页
A coupled element modeling method is proposed for global dynamic analyses of unbonded flexible risers.Owing to the multi-layer structure of unbonded flexible risers, the global-dynamic-analysis method applied to the s... A coupled element modeling method is proposed for global dynamic analyses of unbonded flexible risers.Owing to the multi-layer structure of unbonded flexible risers, the global-dynamic-analysis method applied to the steel rigid risers is insufficient for flexible risers. The main challenges lie in the enormous difference between the anti-tension and anti-binding capacity of unbonded flexible risers which results in serious ill-conditional calculation in global dynamic analysis. In order to solve this problem, the coupled element modeling approach was proposed in this study. A time domain fatigue analysis was applied to illustrate the necessity of the proposed approach.A dynamic benchmark case is used to demonstrate the accuracy of the coupled element method respectively.Subsequently the validated coupling element method is employed to conduct the global dynamic analyses for a free hanging flexible riser. The results demonstrate that the proposed approach can give the accurate global dynamic response under the guidance of the fatigue failure mode for unbonded flexible riser. The parametric influence analyses also provide a practical and effective way for predicting the global dynamic response. 展开更多
关键词 unbonded flexible riser dynamic analysis FATIGUE finite element method
原文传递
Effects of existing concrete pavement condition on performance of unbonded jointed plain concrete overlay
9
作者 Gauhar Sabih Rafiqul A.Tarefder 《Journal of Traffic and Transportation Engineering(English Edition)》 CSCD 2019年第6期567-576,共10页
Unbonded concrete overlay(UBCO) is the most used pavement rehabilitation technique across United States with an overall usage of 47% amongst all the rehabilitation methods.It is aimed to improve the performance of any... Unbonded concrete overlay(UBCO) is the most used pavement rehabilitation technique across United States with an overall usage of 47% amongst all the rehabilitation methods.It is aimed to improve the performance of any deteriorated/cracked jointed plain concrete pavement(JPCP).Unbonded JPCP overlay involves placement of a separation layer of hot mix asphalt(HMA),which acts as a stress relief layer between the existing concrete pavement and the overlay.There are numerous factors that affect the design and performance of UBCOs and out of these,existing pavement condition or the severity of damage of existing pavement is a prime factor.The severity of damage is described by the distressed elastic modulus thus,accurate determination of the distressed elastic modulus of the existing concrete pavement is essential for predicting the accurate performance of the unbonded overlay.This study focuses on analyzing the impact of distressed modulus by conducting simulations in the AASHTOWare pavement ME design software version 2.3 and evaluating the predicted performance of JPCP overlay for two different climatic regions.The results indicated that the distressed modulus of existing concrete pavement affects the performance of the overlay with regards to transverse cracking,joint faulting and pavement roughness.Transverse cracking is the most affected performance parameter with a change of 0.27% 2.31% with a unit change in distressed modulus.The impact of climatic conditions on the performance of unbonded overlay was also observed.The adverse effects of distressed modulus can be minimized by reducing the joint spacing or increasing the overlay slab thickness. 展开更多
关键词 unbonded concrete OVERLAY Transverse CRACKING Joint FAULTING International ROUGHNESS index Distressed Elastic MODULUS
原文传递
Comparison Between Different Finite Element Analyses of Unbonded Flexible Pipe via Different Modeling Patterns
10
作者 庞国良 陈超核 +1 位作者 沈义俊 刘夫永 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第3期357-363,共7页
Three kinds of models based on the same flexible pipe with 8 layers have been separately created to investigate the effects of different modeling approaches on numerical simulation results of finite element(FE)models ... Three kinds of models based on the same flexible pipe with 8 layers have been separately created to investigate the effects of different modeling approaches on numerical simulation results of finite element(FE)models for unbonded flexible pipes.Then the mechanical property of the unbonded flexible pipe under tension,torsion and bending load has been analyzed and compared via ABAQUS software on the basis of three created models.The research shows that different modeling methods of flexible pipes make a great difference in the results.Especially,modeling simplifications of the carcass and pressure armor have a great impact on the accuracy of the results.Model 3,in which the carcass is simulated by spiral isot ropic shell and other layers are Simula ted by solid element,possesses good adaptability,which has been proved by comparing the experiment data and other models.This paper can offer a reference for the FE modeling methods,selection and mechanical property analysis of unbonded flexible pipe. 展开更多
关键词 unbonded flexible PIPE numerical simulation methods FINITE element(FE)analysis
原文传递
Analytical and Numerical Modeling for Flexible Pipes 被引量:12
11
作者 王玮 陈耕 《China Ocean Engineering》 SCIE EI 2011年第4期737-746,共10页
The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic character... The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes. 展开更多
关键词 unbonded flexible pipes effective elastic modulus ISOTROPIC ORTHOTROPIC carcass layer helical layer
下载PDF
An evaluation of force-based design vs.direct displacement-based design of jointed precast post-tensioned wall systems 被引量:10
12
作者 M. Ataur Rahman Sri Sritharan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期285-296,共12页
The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tension... The unique features of jointed post-tensioned wall systems, which include minimum structural damage and re-centering capability when subjected to earthquake lateral loads, are the result of using unbonded post-tensioning to attach the walls to the foundation, along with employing energy dissipating shear connectors between the walls. Using acceptance criteria defined in terms of inter-story drift, residual drift, and floor acceleration, this study presents a multiplelevel performance-based seismic evaluation of two five-story unbonded post-tensioned jointed precast wall systems. The design and analysis of these two wall systems, established as the direct displacement-based and force-based solutions for a prototype building used in the PREcast Seismic Structural Systems (PRESSS) program, were performed at 60% scale so that the analysis model could be validated using the PRESSS test data. Both buildings satisfied the performance criteria at four levels of earthquake motions although the design base shear of the direct displacement-based jointed wall system was 50% of that demanded by the force-based design method. The study also investigated the feasibility of controlling the maximum transient inter-story drift in a jointed wall system by increasing the number of energy dissipating shear connectors between the walls but without significantly affecting its re-centering capability. 展开更多
关键词 CONCRETE PRECAST unbonded post-tensioning WALL building code performance-based evaluation force-baseddesign direct-displacement based design
下载PDF
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls 被引量:9
13
作者 Lu Xilin Yang Boya Zhao Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期221-233,共13页
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ... The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions. 展开更多
关键词 SELF-CENTERING shake-table test RC frame with shear walls PRECAST unbonded post-tensioning seismicperformance
下载PDF
后张无黏结预应力BFRP筋混凝土梁受弯性能试验研究 被引量:1
14
作者 飞渭 李炳宏 +3 位作者 江世永 胡显奇 王兰民 石钱华 《中国塑料》 CAS CSCD 北大核心 2011年第5期79-84,共6页
采用后张法,制作了玄武岩纤维增强塑料筋(BFRP筋)无黏结部分预应力混凝土梁、BFRP筋无黏结全预应力梁以及对比用BFRP筋非预应力梁,对其受弯性能进行对比试验,并对BFRP筋无黏结部分预应力梁中非预应力钢筋的配筋率对受弯性能的影响进行... 采用后张法,制作了玄武岩纤维增强塑料筋(BFRP筋)无黏结部分预应力混凝土梁、BFRP筋无黏结全预应力梁以及对比用BFRP筋非预应力梁,对其受弯性能进行对比试验,并对BFRP筋无黏结部分预应力梁中非预应力钢筋的配筋率对受弯性能的影响进行了研究。结果表明,对BFRP筋施加预应力,可以明显提高梁的抗裂度,有效减小梁的挠度和裂缝宽度,改善BFRP筋混凝土梁的正常使用性能;与全预应力梁相比,配置有非预应力钢筋的部分预应力BFRP筋梁的延性更好;且随着非预应力钢筋配筋率的增加,梁的屈服荷载和极限荷载随之提高,裂缝间距、极限裂缝宽度则随之减小。 展开更多
关键词 玄武岩纤维增强塑料筋 混凝土梁 无黏结 全预应力 部分预应力 后张法 受弯性能
下载PDF
Seismic performance evaluation of a self-centering precast reinforced concrete frame structure 被引量:2
15
作者 Mao Chenxi Wang Zhenying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期943-968,共26页
The seismic performance of a five-story,four-bay,self-centering precast reinforced concrete frame(SC-RCF),which was redesigned using the direct displacement-based design method,was analytically investigated.The analyt... The seismic performance of a five-story,four-bay,self-centering precast reinforced concrete frame(SC-RCF),which was redesigned using the direct displacement-based design method,was analytically investigated.The analytical model of the overall structure was developed in OpenSees.The multi-spring contact element was adopted to simulate gap open-close behavior at connection interfaces.The limit states of external mild steel dampers and unbonded post-tensioning strands were considered.Static pushover analyses were performed up to the roof drift of 10%.The nonlinear dynamic responses under four groups of ground motions(with different fault distances and site conditions)at six hazard levels(from the service to the very rare earthquake(VRE))were compared.Incremental dynamic analyses were implemented to quantify the structural collapse risk.The results showed that the structural responses of SC-RCF were satisfactory under all levels of earthquakes.The collapse safety of the structure under earthquakes up to VRE1 was adequate,while the structure would collapse to a large extent under VRE2 and VRE3. 展开更多
关键词 self-centering system precast RC frame unbonded post-tensioning incremental dynamic analysis collapse fragility
下载PDF
Dynamic response analysis of blocks-combined dam under impact load
16
作者 GAO Fang-fang TIAN Wei 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2827-2839,共13页
In order to reduce the damage of ordinary gravity dam impacted by boulders in debris flow,a blocks-combined dam based practical project is proposed.The dynamic response of the proposed dam under impact load is investi... In order to reduce the damage of ordinary gravity dam impacted by boulders in debris flow,a blocks-combined dam based practical project is proposed.The dynamic response of the proposed dam under impact load is investigated by using ABAQUS finite element software.Considering the impact velocity and impact height,the anti-impact performance of blocks-combined dam is discussed in terms of deformation,displacement,impact force,acceleration,and energy,and is compared with that of ordinary dam.Results show that the displacement,impact force and acceleration of dam increase with the increase of impact velocity and height.The impact energy of blocks-combined dam is mainly absorbed and consumed by the friction between the component interfaces,which is related to the location of impact point.Compared with the ordinary gravity dam,the blocks-combined dam has better impact resistance to boulders in debris flow. 展开更多
关键词 Impact load Blocks-combined dam unbonded post tensioned steel strand Debris flow Dynamic response Numerical simulation
下载PDF
Self-centring segmental retaining walls—A new construction system for retaining walls
17
作者 Mehdi JAVADI Reza HASSANLI +1 位作者 Md Mizanur RAHMAN Md Rajibul KARIM 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期980-1000,共21页
This paper reports on an experimental study on a new self-centring retaining wall system.Four post-tensioned segmental retaining walls(PSRWs)were experimentally tested.Each of the walls was constructed using seven T-s... This paper reports on an experimental study on a new self-centring retaining wall system.Four post-tensioned segmental retaining walls(PSRWs)were experimentally tested.Each of the walls was constructed using seven T-shaped concrete segments with a dry stack.The walls were tested under incrementally increasing cyclic lateral load.The effect of the wall height,levels of post-tensioning(PT)force,and bonded versus unbonded condition of PT reinforcement on the structural behavior of the PSRWs was investigated.The results showed that such PSRWs are structurally adequate for water retaining structures.According to the results,increasing the wall height decreases initial strength but increases the deformation capacity of the wall.The larger deformation capacity and ductility of PSRW make it a suitable structural system for fluctuating loads or deformation,e.g.,seawall.It was also found that increasing the PT force increases the wall’s stiffness;however,reduces its ductility.The residual drift and the extent of damage of the unbonded PSRWs were significantly smaller than those of the bonded ones.Results suggest that this newly developed self-centring retaining wall can be a suitable structural system to retain lateral loads.Due to its unique deformation capacity and self-centring behavior,it can potentially be used for seawall application. 展开更多
关键词 retaining wall SEGMENTAL precast concrete unbonded post-tensioning water retaining wall SEAWALL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部