In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equation...In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equations from observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed here that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax mean square or guaranteed estimates. We establish that the minimax mean square estimates are expressed via solutions of some systems of differential equations of special type and determine estimation errors.展开更多
In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty...In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.展开更多
In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the...In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.展开更多
文摘In this paper we construct optimal, in certain sense, estimates of values of linear functionals on solutions to two-point boundary value problems (BVPs) for systems of linear first-order ordinary differential equations from observations which are linear transformations of the same solutions perturbed by additive random noises. It is assumed here that right-hand sides of equations and boundary data as well as statistical characteristics of random noises in observations are not known and belong to certain given sets in corresponding functional spaces. This leads to the necessity of introducing minimax statement of an estimation problem when optimal estimates are defined as linear, with respect to observations, estimates for which the maximum of mean square error of estimation taken over the above-mentioned sets attains minimal value. Such estimates are called minimax mean square or guaranteed estimates. We establish that the minimax mean square estimates are expressed via solutions of some systems of differential equations of special type and determine estimation errors.
基金Supported by the National Natural Science Foundation of China(No.10671010,10871144 and 10671145)
文摘In this paper, we adopt the robust optimization method to consider linear complementarity problems in which the data is not specified exactly or is uncertain, and it is only known to belong to a prescribed uncertainty set. We propose the notion of the p-robust counterpart and the p-robust solution of uncertain linear complementarity problems. We discuss uncertain linear complementarity problems with three different uncertainty sets, respectively, including an unknown-but-bounded uncertainty set, an ellipsoidal uncertainty set and an intersection-of-ellipsoids uncertainty set, and present some sufficient and necessary (or sufficient) conditions which p-robust solutions satisfy. Some special eases are investigated in this paper.
基金supported by the National Natural Science Foundation of China (Grants 11002013, 11372025)the Defense Industrial Technology Development Program (Grants A0820132001, JCKY2013601B)+1 种基金the Aeronautical Science Foundation of China (Grant 2012ZA51010)111 Project (Grant B07009) for support
文摘In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.