Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant co...Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space ...This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.展开更多
作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的...作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的空间和基于限制的空间,RFID监控场景通常被设置在一种半限制的空间内,需要新的存储和距离计算策略.此外,监控对象位置的不确定性对查询语义和处理方法提出了挑战.提出了半限制空间的概念,并且分析了基于RFID的半限制空间的模型.基于半限制空间,在给定一个动态查询点的基础上,提出了3种模型和算法以有效地估计可能性k-近邻的查询结果,并采用一些特殊的索引技术加快查询的速度.实验对提出算法的效率和准确性进行了评估,表明了相关方法的有效性.展开更多
基金supported by the National Natural Science Foundation of China(11372073,11072061)
文摘Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
文摘This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller design method is illustrated with the help of one example.
文摘作为一种监控与跟踪车流和人类活动等的潜在技术,RFID(radio frequency identification)已经在数据库领域得到了很大关注.RFID监控对象上的k-近邻查询是一种最重要的时空查询,能够用来支持有价值的高层信息分析.但是,不同于没有限制的空间和基于限制的空间,RFID监控场景通常被设置在一种半限制的空间内,需要新的存储和距离计算策略.此外,监控对象位置的不确定性对查询语义和处理方法提出了挑战.提出了半限制空间的概念,并且分析了基于RFID的半限制空间的模型.基于半限制空间,在给定一个动态查询点的基础上,提出了3种模型和算法以有效地估计可能性k-近邻的查询结果,并采用一些特殊的索引技术加快查询的速度.实验对提出算法的效率和准确性进行了评估,表明了相关方法的有效性.