Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quan...Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quantum teleportation and entanglement swapping, which is robustly secure against the most general Trojan horse attacks. Our scheme is not an improvement of the communication apparatus, but the improvement of quantum communication protocol itself. We show that our modified schemes may be implemented with current technology.展开更多
Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisti...Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisticate commitment schemes. In this paper, we study for the first time multireceiver commitment in unconditionally secure setting, i.e., one committer promises a group of verifiers a common secret value (in computational setting it is trivial). We extend the Rivest model for this purpose and present a provably secure generic construction using multireceiver authentication codes (without secrecy) as building blocks. Two concrete schemes are proposed as its immediate implementations, which are almost as efficient as an optimal MRA-code. We believe using other primitives to construct variants of this concept will open doors for more interesting research.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10504039.
文摘Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quantum teleportation and entanglement swapping, which is robustly secure against the most general Trojan horse attacks. Our scheme is not an improvement of the communication apparatus, but the improvement of quantum communication protocol itself. We show that our modified schemes may be implemented with current technology.
基金Supported by the Foundation of Development and Reform Commission of China under Grant High-Tech ([2007] 2367)
文摘Existing commitment schemes were addressed under the classic two-party scenario, However, popularity of the secure multi-party computation in today's lush network communication is motivating us to adopt more sophisticate commitment schemes. In this paper, we study for the first time multireceiver commitment in unconditionally secure setting, i.e., one committer promises a group of verifiers a common secret value (in computational setting it is trivial). We extend the Rivest model for this purpose and present a provably secure generic construction using multireceiver authentication codes (without secrecy) as building blocks. Two concrete schemes are proposed as its immediate implementations, which are almost as efficient as an optimal MRA-code. We believe using other primitives to construct variants of this concept will open doors for more interesting research.