期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Improving the Unconfined Compressive Strength of Red Clay by Combining Biopolymers with Fibers 被引量:2
1
作者 Zhiyu Weng Lina Wang +3 位作者 Qiang Liu Xuemin Pan Yonghao Xu Jing Li 《Journal of Renewable Materials》 SCIE EI 2021年第8期1503-1517,共15页
To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfi... To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment. 展开更多
关键词 BIOPOLYMER xanthan gum polypropylene fiber red clay MICRO-MECHANISM unconfined compressive strength
下载PDF
The Influence of Freeze-Thaw Cycles on Unconfined Compressive Strength of Lignin Fiber-Reinforced Loess 被引量:1
2
作者 Zhongnan Gao Xiumei Zhong +2 位作者 Qian Wang Yongqi Su Jun Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1063-1080,共18页
In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber ... In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles.At the same time,as eco-environmental protection has become the focus,which has been paid more and more attention to,it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives.The purpose of this paper uses new environmental-friendly improved materials to reinforce the engineering performance of loess,improve the ability of loess to resist freeze-thaw cycles,and reduce the negative impact on the ecological environment.To reinforce the engineering performance of loess and improve its ability to resist freeze-thaw cycles,lignin fiber is used as a reinforcing material.Through a series of laboratory tests,the unconfined compressive strength(UCS)of lignin fiber-reinforced loess under different freeze-thaw cycles was studied.The effects of lignin fiber content and freeze-thaw cycles on the strength and deformation modulus of loess were analyzed.Combined with the microstructure features,the change mechanism of lignin fiber-reinforced loess strength under freeze-thaw cycles was discussed.The results show that lignin fiber can improve the UCS of loess under freeze-thaw cycles,but the strengthening effect no longer increases with the increase of fiber content.When the fiber content is less than 1%,the UCS growth rate of loess is the fastest under freeze-thaw cycles.And the UCS of loess with 1%fiber content is the most stable under freeze-thaw cycles.The freeze-thaw cycles increase the deformation modulus of loess with 1%fiber content,and its ability to resist deformation is obviously better than loess with 1.5%,2%and 3%fiber content.The fiber content over 1%will weaken the strengthening effect of lignin fiber-reinforced loess,and the optimum fiber content of lignin fiber-reinforced loess under freeze-thaw cycles is 1%. 展开更多
关键词 Fiber-reinforced loess freeze-thaw cycles unconfined compressive strength deformation modulus
下载PDF
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone
3
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) unconfined compression strength(UCS) Multiple nonlinear regression model
下载PDF
Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines 被引量:2
4
作者 Alireza TABARSA Nima LATIFI +1 位作者 Abdolreza OSOULI Younes BAGHERI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期520-536,共17页
This study aims to improve the unconfined compressive strength of soils using additives as well as by predicting the strength behavior of stabilized soils using two artificial-intelligence-based models.The soils used ... This study aims to improve the unconfined compressive strength of soils using additives as well as by predicting the strength behavior of stabilized soils using two artificial-intelligence-based models.The soils used in this study are stabilized using various combinations of cement,lime,and rice husk ash.To predict the results of unconfined compressive strength tests conducted on soils,a comprehensive laboratory dataset comprising 137 soil specimens treated with different combinations of cement,lime,and rice husk ash is used.Two artificial-intelligence-based models including artificial neural networks and support vector machines are used comparatively to predict the strength characteristics of soils treated with cement,lime,and rice husk ash under different conditions.The suggested models predicted the unconfined compressive strength of soils accurately and can be introduced as reliable predictive models in geotechnical engineering.This study demonstrates the better performance of support vector machines in predicting the strength of the investigated soils compared with artificial neural networks.The type of kernel function used in support vector machine models contributed positively to the performance of the proposed models.Moreover,based on sensitivity analysis results,it is discovered that cement and lime contents impose more prominent effects on the unconfined compressive strength values of the investigated soils compared with the other parameters. 展开更多
关键词 unconfined compressive strength artificial neural network support vector machine predictive models regression
原文传递
Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays 被引量:15
5
作者 刘汉龙 洪振舜 《海洋工程:英文版》 2003年第3期407-416,共10页
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ... Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data. 展开更多
关键词 correcting method degree of sample disturbance liquid limit natural marine clays natural water content oedometer test data unconfined compressive strength
下载PDF
Influence of Salt-Lime Stabilization on Soil Strength for Construction on Soft Clay
6
作者 Md. Moheful Islam Chowdhury Zubayer Bin Zahid +2 位作者 Mohammad Abu Umama Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第3期528-539,共12页
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo... Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering. 展开更多
关键词 Organic Soil Bearing Capacity Soil Improvement Salt-Lime unconfined compressive strength
下载PDF
Strength and deformation characteristics of carbonated reactive magnesia treated silt soil 被引量:17
7
作者 蔡光华 刘松玉 +2 位作者 杜延军 章定文 郑旭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1859-1868,共10页
A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, str... A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy. 展开更多
关键词 carbon dioxide accelerated carbonation reactive magnesia unconfined compressive strength strength-prediction model
下载PDF
Strength properties of xanthan gum and guar gum treated kaolin at different water contents 被引量:4
8
作者 Irem Bozyigit Akbar Javadi Selim Altun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1160-1172,共13页
Nowadays,using biopolymer as a ground improvement method has become very popular.However,since biopolymers are organic and degradable,their long-term effect is not fully known.In this study,the effects of biopolymers ... Nowadays,using biopolymer as a ground improvement method has become very popular.However,since biopolymers are organic and degradable,their long-term effect is not fully known.In this study,the effects of biopolymers on the mechanical behavior of kaolin clay were investigated through a comprehensive program of experiments.Two types of biopolymer,i.e.xanthan gum and guar gum were chosen to investigate the effect of biopolymer type.For this purpose,specimens were prepared using standard Proctor energy at four different water contents(25%,30%35%and 40%)with 0.5%,1%,1.5%and 2%biopolymer inclusions.The specimens were cured for 1 d,7 d,28 d and 90 d.Moreover,some of the specimens were kept in the curing room for 3 years to observe the long-term effect of the biopolymers.At the end of the curing periods,the specimens were subjected to unconfined compression test,and scanning electron microscopy(SEM)analysis was performed to observe the mechanism of strength improvement.The results revealed that the unconfined compressive strength(UCS)of the specimens treated with biopolymers increased in all biopolymer inclusion levels and water contents up to a 90-d curing period.For specimens containing xanthan gum,the maximum strength increase was observed at 25%water content and 2%xanthan gum with 90-d curing.The strength increased 5.23 times induced by xanthan gum addition when compared to the pure clay.Moreover,the increase in strength reached 8.53 times in specimens treated with guar gum.Besides,increasing water content caused more ductile behavior,thus increasing the axial deformation. 展开更多
关键词 BIOPOLYMER CLAY unconfined compressive strength(UCS) Xanthan gum Guar gum strength properties
下载PDF
Mechanical and hydraulic properties of carbonate rock:The critical role of porosity 被引量:1
9
作者 Kam Ng J.Carlos Santamarina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期814-825,共12页
Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genes... Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genesis and diagenetic overprint determine the properties of carbonate rocks.This study combines recent data gathered from Madison Limestone and an extensive dataset compiled from published sources to analyze the hydraulic and mechanical properties of limestone carbonate rocks.Physical models and data analyses recognize the inherently granular genesis of carbonate rocks and explain the strong dependency of physical properties on porosity.The asymptotically-correct power model in terms of(1-Ф/Ф*)a is a good approximation to global trends of unconfined stiffness E and unconfined compressive strength UCS,cohesive intercept in Mohr-Coulomb failure envelopes,and the brittle-toductile transition stress.This power model is the analytical solution for the mechanical properties of percolating granular structures.We adopted a limiting granular porosityФ*=0.5 for all models,which was consistent with the loosest packing of monosize spheres.The fitted power model has exponent(α=2)in agreement with percolation theory and highlights the sensitivity of mechanical properties to porosity.Data and models confirm a porosity-independent ratio between unconfined stiffness and strength,and the ratio follows a log-normal distribution with mean(E/UCS)≈300.The high angle of internal shear strength measured for carbonate rocks reflects delayed contact failure with increased confinement,and it is not sensitive to porosity.Permeability spans more than six orders of magnitude.Grain size controls pore size and determines the reference permeability k^(*)at the limiting porosityФ*=0.5.For a given grain size from fine to coarse-grained dominant carbonates,permeability is very sensitive to changes in porosity,suggesting preferential changes in the internal pore network during compaction. 展开更多
关键词 Rock porosity Carbonate permeability Rock unconfined stiffness unconfined compressive strength(UCS)
下载PDF
The geomechanical properties of soils treated with nanosilica particles
10
作者 Gizem Aksu Tugba Eskisar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期954-969,共16页
This study examines the effect of nanosilica(NS)additive to improve the mechanical properties of clay,clayey sand,and sand.The engineering properties of the soils were investigated through Atterberg limits,compaction,... This study examines the effect of nanosilica(NS)additive to improve the mechanical properties of clay,clayey sand,and sand.The engineering properties of the soils were investigated through Atterberg limits,compaction,unconfined compression,ultrasonic pulse velocity(UPV),freeze-thaw,and direct shear tests.The NS content varied from 0%to 0.7%and cement content was 5%and 10%by the dry weight of the soil.The curing period varied from 7 d to 150 d.The consistency,compaction,and strength properties of the soils were affected by the presence of NS and cement.The optimum NS contents in clay specimens with 5%and 10%cement were 0.5%and 0.7%,respectively.It was 0.7%in sand specimens with both cement ratios,as well as 0.3%and 0.7%in clayey sand specimens with 5%and 10%cement,respectively.In terms of freeze-thaw resistance,clayey sand specimens containing 0.5%NS and 10%cement had the minimum strength loss.Exponential relationships existed between the ultrasonic pulse velocity(UPV)and the unconfined compressive strength(UCS)of soil specimens having the same curing period.The shear strength parameters of the soils also improved with the addition of NS.Scanning electron microscope(SEM)images demonstrated that cement and NS contributed to the improvement of the soils by producing a denser and more uniform structure.It was concluded that the minor addition of NS could potentially improve the geomechanical properties of the soils. 展开更多
关键词 Nanosilica(NS) Atterberg limits COMPACTION unconfined compressive strength(UCS) Ultrasonic pulse velocity(UPV) FREEZE-THAW
下载PDF
Modified sewage sludge as temporary landfill cover material 被引量:7
11
作者 Jun He Feng Li +1 位作者 Yong Li Xi-lin Cui 《Water Science and Engineering》 EI CAS CSCD 2015年第3期257-262,共6页
In order to study the feasibility of modified sewage sludge as landfill cover material and its performance in a complex landfill environment, strength and hydraulic conductivity tests were conducted. The permeability ... In order to study the feasibility of modified sewage sludge as landfill cover material and its performance in a complex landfill environment, strength and hydraulic conductivity tests were conducted. The permeability requirements for daily and interim covers were analyzed first. Based on saturated-unsaturated seepage calculations, it is suggested that approximately 1.0×10^-4 cm/s and 1.0 × 10^-5 cm/s are the appropriate values for the hydraulic conductivities of daily and interim covers, respectively. The strength and permeability requirements of the mixtures, when used as an interim cover, can be met at a sludge:lime:cement:silt:tire-derived aggregate (TDA) weight ratio of 100:15:5:70:15. Results also demonstrate that the solid content ratio of modified sewage sludge, which should be greater than 60% when modified sewage sludge is used as a temporary cover material, is crucial to both strength and hydraulic performance. In addition, as the duration of soaking of modified sewage sludge in synthetic leachate increases, the unconfined compressive strength increases, and the hydraulic conductivity decreases slightly or fluctuates between 1.0×10^-5 cm/s and 1.0 × 10^-6 cm/s, still meeting the requirements for an interim cover. The reduction in hydraulic conductivity of modified sewage sludge under the effect of synthetic leachate, as well as the long-term and environmental performance of the modified sewage sludge, should be examined in future studies. 展开更多
关键词 Modified sewage sludge Temporary cover Hydraulic conductivity unconfined compressive strength SOAKING
下载PDF
Empirical methods for determining shaft bearing capacity of semi-deep foundations socketed in rocks 被引量:5
12
作者 S.Rezazadeh A.Eslami 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1140-1151,共12页
Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In t... Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy load imposed by high-rise structures, due to the low settlement and high bearing capacity. In the optimum design of semi-deep foundations, prediction of the shaft bearing capacity, rs, of foundations socketed in rocks is thus critically important. In this study, the unconfined compressive strength(UCS), qu, has been applied in order to investigate the shaft bearing capacity. For this, a database of 106 full-scale load tests is compiled with UCS values of surrounding rocks, in which 34 tests with rock quality designation(RQD), and 5 tests with rock mass rating(RMR). The bearing rocks for semi-deep foundations include limestone, mudstone, siltstone, shale, granite, tuff, granodiorite, claystone, sandstone, phyllite, schist, and greywacke. Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS based on the types of rocks. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data. Since rock-socketed shafts are supported by rock mass(not intact rock), a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, qu(modified), based upon RMR and RQD in order to take into account the effect of the rock mass properties. 展开更多
关键词 Shaft bearing capacity Semi-deep foundations Database Rock-socketed shaft unconfined compressive strength(UCS)
下载PDF
Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: Experimental and prediction studies 被引量:3
13
作者 Mohammad Saberian Soheil Jahandari +1 位作者 Jie Li Farzad Zivari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期638-647,共10页
Lime concrete and lime treatment are two attractive techniques for geotechnical engineers.However,researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundw... Lime concrete and lime treatment are two attractive techniques for geotechnical engineers.However,researches have rarely been carried out to study the effects of moisture and capillary action due to increasing groundwater level on geotechnical properties of lime concrete.The aim of this study is to investigate the effects of curing time and degree of saturation on some of geotechnical properties of lime concrete such as unconfined compressive strength(UCS),secant modulus(ES),failure strain,brittleness index(IB),and deformability index(ID) using unconfined compression tests.First of all,geotechnical and chemical properties of used materials were determined.After curing times of 14 d,28 d,45 d,and 60 d in laboratory condition,the specimens were exposed to saturation levels ranging from 0 to 100%.The results showed that the moisture and curing time have significant effects on the properties of lime concrete.Based on the results of scanning electron micrograph(SEM) test,it was observed that the specimen was characterized by a rather well-structured matrix since both the filling of a large proportion of the coarse-grained soil voids by clay and the pozzolanic activity of lime led to retaining less pore water in the specimen,increasing the UCS and ES,and consequently resisting against swelling and shrinkage of the clay soil.Moreover,due to the pozzolanic reactions and reduction of water,by increasing the curing time and decreasing the degrees of saturation,UCS,ES,and IBincreased,and IDdecreased.Based on the experimental results,a phenomenological model was used to develop equations for predicting the properties in relation to the ratio of degree of saturation/curing time.The results showed that there was a good correlation(almost R2> 90%) between the measured parameters and the estimated ones given by the predicted equations. 展开更多
关键词 Lime concrete Degree of saturation Curing time unconfined compressive strength(UCS) Secant modulus Failure strain Deformability and brittleness indices Phenomenological model
下载PDF
Use of recycled gypsum in the cement-based stabilization of very soft clays and its micro-mechanism 被引量:3
14
作者 Jun Wu Li Liu +3 位作者 Yongfeng Deng Guoping Zhang Annan Zhou Henglin Xiao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期909-921,共13页
This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and ... This paper presents an experimental study and micro-mechanism discussion on gypsum role in the mechanical improvements of cement-based stabilized clay(CBSC).A soft marine clay at two initial water contents(i.e.50%and 70%)was treated by reconstituted cementitious binders with varying gypsum to clinker(G/C)ratios and added metakaolin to facilitate the formation of ettringite,followed by the measurements of final water contents,dry densities and strengths in accordance with ASTM standards as well as microstructure by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).Results reveal that the gypsum fraction has a significant influence on the index and mechanical properties of the CBSC,and there exists a threshold of the G/C ratio,which is 10%and 15%for clays with 50%and 70%initial water contents,respectively.Beyond which adding excessive gypsum cannot improve the strength further,eliminating the beneficial role.At these thresholds of the G/C ratio,the unconfined compressive strength(UCS)values for clays with 50%and 70%initial water contents are 1.74 MPa and 1.53 MPa at 60 d of curing,respectively.Microstructure characterization shows that,besides the common cementation-induced strengthening,newly formed ettringite also acts as significant pore infills,and the associated remarkable volumetric expansion is responsible,and may be the primary factor,for the beneficial strength gain due to the added gypsum.Moreover,pore-filling ettringite also leads to the conversion of relatively large inter-aggregate to smaller intra-aggregate pores,thereby causing a more homogeneous matrix or solid skeleton with higher strength.Overall,added gypsum plays a vital beneficial role in the strength development of the CBSC,especially for very soft clays. 展开更多
关键词 Cement-based stabilized clay(CBSC) Cement clinker GYPSUM ETTRINGITE unconfined compressive strength(UCS) MICRO-MECHANISM
下载PDF
Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation 被引量:3
15
作者 E.U.Eyo S.Ng’ambi S.J.Abbey 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期1056-1069,共14页
The mechanical performances and water retention characteristics of clays,stabilised by partial substitution of cement with by-products and inclusion of a nanotechnology-based additive called RoadCem(RC),are studied in... The mechanical performances and water retention characteristics of clays,stabilised by partial substitution of cement with by-products and inclusion of a nanotechnology-based additive called RoadCem(RC),are studied in this research.The unconfined compression tests and one-dimensional oedometer swelling were performed after 7 d of curing to understand the influence of addition of 1%of RC material in the stabilised soils with the cement partially replaced by 49%,59%and 69%of ground granulated blast furnace slag(GBBS)or pulverised fuel ash(PFA).The moisture retention capacity of the stabilised clays was also explored using the soil-water retention curve(SWRC)from the measured suctions.Results confirmed an obvious effect of the use of RC with the obtained strength and swell properties of the stabilised clays suitable for road application at 50%replacement of cement.This outcome is associated with the in-depth and penetrating hydration of the cementitious materials by the RC and water which results in the production of needle-like matrix with interlocking filaments e a phenomenon referred to as the‘wrapping’effect.On the other hand,the SWRC used to describe the water holding capacity and corresponding swell mechanism of clays stabilised by a proportion of RC showed a satisfactory response.The moisture retention of the RC-modified clays was initially higher but reduced subsequently as the saturation level increased with decreasing suction.This phenomenon confirmed that clays stabilised by including the RC are water-proof in nature,thus ensuring reduced porosity and suction even at reduced water content.Overall,the stabilised clays with the combination of cement,GGBS and RC showed a better performance compared to those with the PFA included. 展开更多
关键词 CEMENT Ground granulated blast furnace slag(GBBS) Fly ash RoadCem(RC) SWELL Stabilisation unconfined compressive strength Soil-water retention curve(SWRC)
下载PDF
Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust 被引量:3
16
作者 Abdullah A.Al-Homidy Mohammed H.Dahim Ahmed K.Abd El Aal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期749-760,共12页
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin... Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits. 展开更多
关键词 Sabkha soil Geotechnical properties Soil improvement Cement kiln dust(CKD) unconfined compressive strength(UCS) Soaked California bearing ratio(CBR) Durability
下载PDF
Laboratory-scale model of carbon dioxide deposition for soilstabilisation 被引量:1
17
作者 Mohammad Hamed Fasihnikoutalab Afshin Asadi +3 位作者 Bujang Kim Huat PaulWestgate Richard JBall Shahram Pourakbar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期178-186,共9页
Olivine sand is a natural mineral,which,when added to soil,can improve the soil’s mechanical properties while also sequester carbon dioxide(CO2)from the surrounding environment.The originality of this paper stems fro... Olivine sand is a natural mineral,which,when added to soil,can improve the soil’s mechanical properties while also sequester carbon dioxide(CO2)from the surrounding environment.The originality of this paper stems from the novel two-stage approach.In the first stage,natural carbonation of olivine and carbonation of olivine treated soil under different CO2pressures and times were investigated.In this stage,the unconfined compression test was used as a tool to evaluate the strength performance.In the second stage,details of the installation and performance of carbonated olivine columns using a laboratory-scale model were investigated.In this respect,olivine was mixed with the natural soil using the auger and the columns were then carbonated with gaseous CO2.The unconfined compressive strengths of soil in the first stage increased by up to 120% compared to those of the natural untreated soil.The strength development was found to be proportional to the CO2pressure and carbonation period.Microstructural analyses indicated the presence of magnesite on the surface of carbonated olivinetreated soil,demonstrating that modified physical properties provided a stronger and stiffer matrix.The performance of the carbonated olivine-soil columns,in terms of ultimate bearing capacity,showed that the carbonation procedure occurred rapidly and yielded a bearing capacity value of 120 k Pa.Results of this study are of significance to the construction industry as the feasibility of carbonated olivine for strengthening and stabilizing soil is validated.Its applicability lies in a range of different geotechnical applications whilst also mitigates the global warming through the sequestration of CO2. 展开更多
关键词 OLIVINE Soil stabilisation CO_2 deposition Climate change unconfined compressive strength Microstructure analysis
下载PDF
Effects of Lateral Variation in Vegetation and Basin ‘Dome' Shape on Tropical Lowland Peat Stabilisation in the Kota Samarahan-Asajaya Area, West Sarawak, Malaysia
18
作者 Mohamad Tarmizi Mohamad ZULKIFLEY Tham Fatt NG +2 位作者 John Kuna RAJ Roslan HASHIM Muhammad Aqeel ASHRAF 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第3期894-914,共21页
Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of... Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome). 展开更多
关键词 tropical lowland peat dome/basin mineral soil filler cement-filler-peat stabilisation topogenic unconfined compressive strength lateral vegetation succession.
下载PDF
Development and Field Application of Phosphogypsum-Based Soil Subgrade Stabilizers
19
作者 Hongfei Yue Aiguo Fang +3 位作者 Sudong Hua Zenghuan Gu Yu Jia Cheng Yang 《Journal of Renewable Materials》 SCIE EI 2022年第8期2247-2261,共15页
A phosphogypsum-based subgrade stabilizer(PBSS)was formulated using industrial by-product phosphogypsum(PG),mixed with slag and calcium-silicon-rich active material(GSR).The active powder(AP)was used to modify PBSS,an... A phosphogypsum-based subgrade stabilizer(PBSS)was formulated using industrial by-product phosphogypsum(PG),mixed with slag and calcium-silicon-rich active material(GSR).The active powder(AP)was used to modify PBSS,and PBSS-AP was obtained.PBSS and PBSS-AP were each mixed with 10%silty soil,and cement and lime(CAL:5%lime+2%cement)were used as the traditional material for comparative experiments.Samples were cured under standard conditions,and tested for unconfined compressive strength(UCS),water stability,volume expansion,and leachate,to explore the stabilization effect of the three solidified materials on silty soil.The results showed that the comprehensive performance of sility soil mixed with 12%PBSS-AP was the best.The CaO,SiO_(2)and Al_(2)O_(3)provided by PG,Slag and GSR will react with water to form a stable C-S-H gel,which is conducive to stabilizing the soil.Field application results showed that the compaction exceeded 95%,the deflection was 144.9 mm,and UCS was 2.5 MPa after 28 days.These findings indicated that PBSS-AP is an effective stabilizer for subgrade soils. 展开更多
关键词 PHOSPHOGYPSUM solidified material unconfined compressive strength water stability volume expansion LEACHATE
下载PDF
Enhancing mechanical behavior of micaceous soil with jute fibers and lime additives
20
作者 J.Zhang A.Deng M.Jaksa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1093-1100,共8页
Micaceous soils are common in many tropical countries and regions,and in some locations with moderate climate.The soils are spongy and unstable when loaded and are not considered suitable as construction material in e... Micaceous soils are common in many tropical countries and regions,and in some locations with moderate climate.The soils are spongy and unstable when loaded and are not considered suitable as construction material in earth structures.To resolve the issue,this work examined performance of micaceous soil reinforced with a combination of jute fibers,hydrated lime or slag-lime.A total of 28 sample sets were prepared at various dosages.Unconfined compression tests were conducted on the samples cured for 7 d and 28 d,respectively.The test results suggested that the unconfined compressive strength(UCS)and material stiffness were increased with the inclusion of up to 1%fiber and decreased if additional fibers were used.The ductility was improved consistently with up to 1.5%fiber content.The inclusions of fibers combined with hydrated lime or slag-lime further enhanced strength and stiffness of micaceous soil,and the improvement depended on the dosages used.For the dosages examined,jute fibers outweighed lime and slag in gaining ductility,and the optimal fiber content was 1%where strength and ductility were considered. 展开更多
关键词 GEOSYNTHETICS Jute fiber unconfined compressive strength(UCS) STIFFNESS
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部