期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Unconfined compressive strength and failure behaviour of completely weathered granite from a fault zone
1
作者 DU Shaohua MA Jinyin +1 位作者 MA Liyao ZHAO Yaqian 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2140-2158,共19页
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests... Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition. 展开更多
关键词 Fault fracture zone Completely weathered granite(CWG) unconfined compression strength(UCS) Multiple nonlinear regression model
下载PDF
Performance evaluation of laterite soil embankment stabilized with bottom ash,coir fiber,and lime
2
作者 Yunusa Hamdanu SANI Amin EISAZADEH 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2334-2351,共18页
In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.... In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides. 展开更多
关键词 Lateritic soil Bottom ash Coir fiber LIME unconfined compressive strength PERMEABILITY FESEM/EDS Rainfall simulation tests
下载PDF
Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays 被引量:15
3
作者 刘汉龙 洪振舜 《海洋工程:英文版》 2003年第3期407-416,共10页
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ... Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data. 展开更多
关键词 correcting method degree of sample disturbance liquid limit natural marine clays natural water content oedometer test data unconfined compressive strength
下载PDF
Testing and numerical simulation of a medium strength rock material under unconfined compression loading 被引量:4
4
作者 Aria Mardalizad Riccardo Scazzosi +1 位作者 Andrea Manes Marco Giglio 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期197-211,共15页
This study aims to numerically and experimentally investigate the response of a medium strength rock material under unconfined compression loading up to failure. The unconfined compressive strength(UCS) is one of the ... This study aims to numerically and experimentally investigate the response of a medium strength rock material under unconfined compression loading up to failure. The unconfined compressive strength(UCS) is one of the most important parameters in characterising rock material behaviour. Hence the UCS is crucial in understanding the failure mechanism of fractured rocks. An effective approach to determine the UCS and to investigate the behaviours of rock materials under unconfined compression is essential in the majority of research fields of rock mechanics. The experimental configuration for the unconfined compression test, suggested by the protocols of the ASTM standard, has some limitations which affect the accuracy in determination of the real UCS. Among several alternative configurations proposed, the Mogi’s configuration seems to be the most appropriate one. Therefore, the ASTM and Mogi’s configurations were used to perform the tests on a medium strength rock material, i.e. Pietra Serena sandstone. The results using two configurations were discussed in terms of the differences. The tests were also replicated in LSDYNA using a finite element method(FEM) coupled smooth particle hydrodynamics(SPH) technique.This technique is employed in this study due to its capabilities to cope with large deformation issues related to the rocks. An advanced material model, called the Karagozian and Case Concrete(KCC) model,is implemented in the numerical simulations. The KCC model consists of three independent fixed failure surfaces and it can consider the damage accumulation based on the current state of stress among these failure surfaces. An equation-of-state(EOS) is used in conjunction with KCC material model for decoupling the volumetric and deviatoric responses. The numerical and experimental results were finally compared with the focus on the stress-strain diagram and the failure patterns. The comparison shows that the numerical results are in good agreement with the experimental results. 展开更多
关键词 Pietra Serena sandstone unconfined compression Mogi's configuration Karagozian and Case Concrete(KCC) model Finite element method(FEM) Smooth particle hydrodynamics(SPH)
下载PDF
Improving the Unconfined Compressive Strength of Red Clay by Combining Biopolymers with Fibers 被引量:2
5
作者 Zhiyu Weng Lina Wang +3 位作者 Qiang Liu Xuemin Pan Yonghao Xu Jing Li 《Journal of Renewable Materials》 SCIE EI 2021年第8期1503-1517,共15页
To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfi... To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment. 展开更多
关键词 BIOPOLYMER xanthan gum polypropylene fiber red clay MICRO-MECHANISM unconfined compressive strength
下载PDF
The Influence of Freeze-Thaw Cycles on Unconfined Compressive Strength of Lignin Fiber-Reinforced Loess 被引量:2
6
作者 Zhongnan Gao Xiumei Zhong +2 位作者 Qian Wang Yongqi Su Jun Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1063-1080,共18页
In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber ... In the seasonal permafrost region with loess distribution,the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to.Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles.At the same time,as eco-environmental protection has become the focus,which has been paid more and more attention to,it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives.The purpose of this paper uses new environmental-friendly improved materials to reinforce the engineering performance of loess,improve the ability of loess to resist freeze-thaw cycles,and reduce the negative impact on the ecological environment.To reinforce the engineering performance of loess and improve its ability to resist freeze-thaw cycles,lignin fiber is used as a reinforcing material.Through a series of laboratory tests,the unconfined compressive strength(UCS)of lignin fiber-reinforced loess under different freeze-thaw cycles was studied.The effects of lignin fiber content and freeze-thaw cycles on the strength and deformation modulus of loess were analyzed.Combined with the microstructure features,the change mechanism of lignin fiber-reinforced loess strength under freeze-thaw cycles was discussed.The results show that lignin fiber can improve the UCS of loess under freeze-thaw cycles,but the strengthening effect no longer increases with the increase of fiber content.When the fiber content is less than 1%,the UCS growth rate of loess is the fastest under freeze-thaw cycles.And the UCS of loess with 1%fiber content is the most stable under freeze-thaw cycles.The freeze-thaw cycles increase the deformation modulus of loess with 1%fiber content,and its ability to resist deformation is obviously better than loess with 1.5%,2%and 3%fiber content.The fiber content over 1%will weaken the strengthening effect of lignin fiber-reinforced loess,and the optimum fiber content of lignin fiber-reinforced loess under freeze-thaw cycles is 1%. 展开更多
关键词 Fiber-reinforced loess freeze-thaw cycles unconfined compressive strength deformation modulus
下载PDF
Hydrogeochemistry and Water Quality Evaluation along the Flow Path in the Unconfined Aquifer of the Düzce Plain, North-western Turkey 被引量:1
7
作者 Nail üNSAL Mehmet ELK 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期213-222,共10页
The Diizce Plain has a multi-aquifer system, which consists of a near surface unconfined aquifer, along with first and second deeper confined aquifers. Hydrochemical evolution and water quality are related to infiltra... The Diizce Plain has a multi-aquifer system, which consists of a near surface unconfined aquifer, along with first and second deeper confined aquifers. Hydrochemical evolution and water quality are related to infiltration of the precipitation, recharge from the formations surrounding the plain, flow path of groundwater and the relationship between surface and groundwater. The groundwater in the unconfined aquifer flows towards the Efteni Lake and the Biiyiik Melen River. Surface waters are divided into two main hydrochemical facies in the study area: (a) Ca2+-HCO3-; and (b) Ca2+, Mg2+-HCOc-, SO4^2-. The groundwater has generally three main hydrochemical facies: (a) Ca2+-HCO3-; (b) Ca2+, Mg2+-HCO3-; and (c) Ca2+, Mg2+-HCO3-, Cl-. The hydrochemical facies "a" and "b" dominate within shallow depths in recharge areas under rapid flow conditions, while hydrochemical facies "c" characterizes shallow and mixed groundwater, which dominate intermediate or discharge areas (near Efteni Lake and Biiyiik Melen River) during low flow conditions and agricultural contamination. Calcium and bicarbonate ions, total hardness and electrical conductivity of total dissolved solids (EC-TDS) values increase along the groundwater flow path; but these parameters remain within the limits specified by the standards set for industrial and agricultural usages. 展开更多
关键词 Duzce Plain groundwater flow path hydrochemical evaluation unconfined aquifer WATERQUALITY
下载PDF
Comparison between Neuman(1975) and Jacob(1946) application for analysing pumping test data of unconfined aquifer 被引量:2
8
作者 Dana Mawlood Jwan Mustafa 《Journal of Groundwater Science and Engineering》 2016年第3期165-173,共9页
Pumping test of a water table aquifer is carried out to estimate the aquifer parameters, the obtained data were analysed through the solution of both Neuman(1975) and Jacob(1946) methods through AQTESOLV and Spreadshe... Pumping test of a water table aquifer is carried out to estimate the aquifer parameters, the obtained data were analysed through the solution of both Neuman(1975) and Jacob(1946) methods through AQTESOLV and Spreadsheet programs, the results of each methods are compared to evaluate the applicability and accuracy of the solution theoretically and practically. In the paper an example is presented, which is conducted for a constant rate pumping test from Ohio, in Fairborn(near Dayton), and it supplied by S.E. Norris(U.S. Geological Survey, Columbus, Ohio). The main objective of this study is to introduce both program and the way of the applications, and compare the results and the hand on of both programs in the field. 展开更多
关键词 Neuman(1975) unconfined aquifer Pumping test AQTESOLV program Microsoft Excel(Spreadsheet) program
下载PDF
Estimating Unconfined Compressive Strength of Sedimentary Rocks in United Arab Emirates from Point Load Strength Index 被引量:2
9
作者 Hussain Salah Maher Omar Abdallah Shanableh 《Journal of Applied Mathematics and Physics》 2014年第6期296-303,共8页
In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sed... In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature. 展开更多
关键词 SEDIMENTARY ROCKS UNITED Arab Emirates unconfined COMPRESSIVE STRENGTH Point Load STRENGTH INDEX Regression Analysis
下载PDF
Groundwater Flow Modeling for Qushtapa Plain Unconfined Aquifer in Southern Erbil Basin, Kurdistan Region, Iraq 被引量:1
10
作者 Shwan Seeyan 《Journal of Geoscience and Environment Protection》 2020年第3期116-132,共17页
Increasing population growth and water demand for various purposes such as irrigation, domestic and industrial production in many parts of the Kurdistan Region is causing deficit in fresh water and rising groundwater ... Increasing population growth and water demand for various purposes such as irrigation, domestic and industrial production in many parts of the Kurdistan Region is causing deficit in fresh water and rising groundwater dependence. Drilling many deep wells in the area unsystematically and continuously increased pumping water from groundwater reservoirs results in lowering of water table. Therefore, it is essential to assess the management of water resources. The study focuses on the groundwater modeling for the Qushtapa District plain area in particular under steady state flow conditions. The aquifer was simulated under unconfined condition and is represented by a single layer of 100 m thickness. MODPATH was used to measure contamination track lines and travel times. This approach involved the introduction of particles at sources of contaminants in the wells and the recharge area, then the identification of the path lines and the determination of the special distribution of contaminants through steady state flow conditions. The simulation of the groundwater head shows that the groundwater head starts from the northeastern part of the plain and decreases towards Lesser Zab River in the south of the plain from 420 m to 140 m above sea level. The modeled layer was calibrated under steady state conditions using hydraulic parameters obtained from observation and pumping wells. The calibrated model is effective in producing steady-state groundwater head distribution and good compliance with observed data. The standard error was estimated as 4.88 m, the normalized root mean square error is 8.3% and the residual mean is 15.79 m. The results of the forward tracking show the source of potential pollutants from the recharge area after different travel time, the particles released at the northern boundary travels to the center and the western part toward the pollution sources. The results of the backward tracking show that the particles located in the extraction wells moved toward the recharge area in the north and northeastern part of the study area. 展开更多
关键词 unconfined AQUIFER GROUNDWATER Model STEADY-STATE Flow Conditions Kurdistan REGION
下载PDF
Winter Rain versus Snow in Headwater Catchments: Responses of an Unconfined Pumice Aquifer, South-Central Oregon, USA
11
作者 Michael L. Cummings David A. Eibert 《Journal of Water Resource and Protection》 2018年第4期461-492,共32页
Winter precipitation in two headwaters catchments (elevation ~1600 m) in the rain shadow of the Cascades volcanic arc in south-central Oregon normally falls as snow. However, in water year 2015, winter precipitation f... Winter precipitation in two headwaters catchments (elevation ~1600 m) in the rain shadow of the Cascades volcanic arc in south-central Oregon normally falls as snow. However, in water year 2015, winter precipitation fell mainly as rain. An eight year study of the unconfined pumice aquifer allowed inter-annual comparison of groundwater recharge during the freshet and discharge during the growing season. During these water years precipitation ranged from 67% (WY2014) to 132% (WY2017) of the 30 year average, and included the rain dominated winter of WY2015 when precipitation during the water year was 98% of the 30 year average. Change in storage in the pumice aquifer was estimated from thickness of the pumice deposit and depth to water table from the ground surface. Measurements were made where 1) the pumice aquifer was exposed at the surface;2) where the aquifer was partially eroded and overlain by either alluvium or lacustrine glassy silt to fine sand;3) fens where the partially eroded aquifer was overlain by peat;and 4) monitoring wells drilled through the pumice aquifer into bedrock. In all settings, groundwater storage in the pumice aquifer following the rain-dominated winter of WY2015 was similar or less than storage following the drought of WY2014 when winter precipitation fell as snow. Storage at the end of WY2014 and WY2015 was the least observed in the eight year study. Winter-time rain during WY2015 produced runoff rather than storage in snow pack. Runoff conveyed from the catchments by flow in stream reaches normally dry from late summer through the winter months. Rain-dominated winter precipitation stresses the perched pumice aquifer. Winter storms starting as rain and turning late to snow and ground-freezing temperatures lead to runoff during the next rain-dominated precipitation event. These patterns produced stream flow in channels that are commonly dry during the winter, reduced near-surface groundwater storage in the pumice aquifer, muted springtime freshet, and stressing of groundwater-dependent ecosystems, forage in meadows, and forest health. 展开更多
关键词 unconfined PUMICE AQUIFER HEADWATER CATCHMENT WINTER Precipitation
下载PDF
Ground Rupturing Due to Entrapped Air/Gas in the Unconfined Zone
12
作者 Manas Banerjee Vimla Prasad Singh +3 位作者 Hridaya Narain Singh Daya Shankar Sun jay Uma Shanker Singh 《International Journal of Geosciences》 2010年第3期149-154,共6页
The sudden and large oscillation of pressure of compressed air/gas entrapped in porous medium due to the changes in the actual pore-fluid pressure, during recharge of water following intense rainfall after a prolonged... The sudden and large oscillation of pressure of compressed air/gas entrapped in porous medium due to the changes in the actual pore-fluid pressure, during recharge of water following intense rainfall after a prolonged period of dryness such that the rainfall intensity exceeding infiltration capacity, leads to the generation of hydo-tremors. These hydro-tremors cause ground rupturing, subsidence, developments of cracks in the building, etc. A theoretical model has been presented to estimate the successive values of compressed air/gas pressures due to the successive development of actual pore-fluid pressures and effective stresses during recharge of water of the unconfined zone during the onset of the summer monsoon of 2008 in the northern parts of India. 展开更多
关键词 unconfined ZONE Compressed Air/Gas Pore-Fluid Pressure Hydro-Tremor GROUND Rupturing Effective Stress
下载PDF
Experimental Study on Dispersion of Unconfined Aquifer in a Site of Jilin City
13
作者 Weihong Dong Ruiqing Wang 《Frontiers Research of Architecture and Engineering》 2020年第3期76-82,共7页
Dispersion parameter is an important parameter for the establishment of groundwater solute transport model.The dispersion test uses sodium chloride as a tracer,which was conducted in a site in Jilin City.The standard ... Dispersion parameter is an important parameter for the establishment of groundwater solute transport model.The dispersion test uses sodium chloride as a tracer,which was conducted in a site in Jilin City.The standard curve comparison method was used to solve the dispersion parameters of the aquifer under the natural flow field.The test results show that under the natural flow field,the longitudinal dispersion of unconfined aquifer in Jilin City is 0.400m,and the transverse dispersion is 1.933×10-5~6.557×10-3m;while the longitudinal dispersion coefficient is 0.246m2/d,the transverse dispersion coefficient is 1.191×10-5~4.039×10-3m2/d.The above results can provide an important parameter basis for the establishment of groundwater solute transport model,the accurate prediction of temporal and spatial variation of pollutant concentration in groundwater and the formulation of groundwater pollution prevention and control scheme. 展开更多
关键词 Dispersion test Dispersion parameters Standard curve comparison method unconfined aquifer
下载PDF
Isochrone map of the unconfined aquifer,superficial formation ,Perth ,western Australia as amanagement tool for the groundwater resources with special reference to risks from urbanization
14
《Global Geology》 1998年第1期12-12,共1页
关键词 Isochrone map of the unconfined aquifer superficial formation Perth western Australia as amanagement tool for the groundwater resources with special reference to risks from urbanization
下载PDF
Mechanical and hydraulic properties of carbonate rock:The critical role of porosity 被引量:1
15
作者 Kam Ng J.Carlos Santamarina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期814-825,共12页
Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genes... Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genesis and diagenetic overprint determine the properties of carbonate rocks.This study combines recent data gathered from Madison Limestone and an extensive dataset compiled from published sources to analyze the hydraulic and mechanical properties of limestone carbonate rocks.Physical models and data analyses recognize the inherently granular genesis of carbonate rocks and explain the strong dependency of physical properties on porosity.The asymptotically-correct power model in terms of(1-Ф/Ф*)a is a good approximation to global trends of unconfined stiffness E and unconfined compressive strength UCS,cohesive intercept in Mohr-Coulomb failure envelopes,and the brittle-toductile transition stress.This power model is the analytical solution for the mechanical properties of percolating granular structures.We adopted a limiting granular porosityФ*=0.5 for all models,which was consistent with the loosest packing of monosize spheres.The fitted power model has exponent(α=2)in agreement with percolation theory and highlights the sensitivity of mechanical properties to porosity.Data and models confirm a porosity-independent ratio between unconfined stiffness and strength,and the ratio follows a log-normal distribution with mean(E/UCS)≈300.The high angle of internal shear strength measured for carbonate rocks reflects delayed contact failure with increased confinement,and it is not sensitive to porosity.Permeability spans more than six orders of magnitude.Grain size controls pore size and determines the reference permeability k^(*)at the limiting porosityФ*=0.5.For a given grain size from fine to coarse-grained dominant carbonates,permeability is very sensitive to changes in porosity,suggesting preferential changes in the internal pore network during compaction. 展开更多
关键词 Rock porosity Carbonate permeability Rock unconfined stiffness unconfined compressive strength(UCS)
下载PDF
An investigation on the strain accumulation of the lightly EICP-cemented sands under cyclic traffic loads 被引量:1
16
作者 Emad Maleki Tabrizi Hamid Reza Tohidvand +2 位作者 Masoud Hajialilue-Bonab Elham Mousavi Saba Ghassemi 《Journal of Road Engineering》 2023年第2期203-217,共15页
Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal th... Industrial production of chemical cement leads to extreme emissions of greenhouse gases.Biological or bioinspired sustainable materials for soil treatment projects can be employed instead of chemical cement to heal the carbon cycle in the ecosystem.The enzyme-induced calcite precipitation(EICP)method is one of the novel bio-inspired technologies that can be employed in soil treatment projects to increase desired properties of soils.While the monotonic and cyclic behavior of the enzymatically treated sands has been investigated comprehensively,the strain accumulation pattern in these improved soils under cyclic traffic loads has not been evaluated yet.In this paper,confined and unconfined cyclic compression tests are applied to the enzymatically lightly cemented sands,and the effects of the different parameters on their strain accumulation pattern are investigated for the first time in the literature.This study uses two types of specimens with unconfined compression strengths(UCS)equal to 42 kPa and 266 kPa.It is shown that the treated specimens have a rate-dependent behavior where cyclic loads with low frequencies lead to more resilient and plastic strains in the specimens.The results show that by approaching the maximum applied stresses to the UCS of the specimens(by breaking more calcite bonds between sand particles),the rate dependency behavior of specimens will reduce.Investigation of the effects of the cementation level demonstrated that by increasing the amount of the precipitated calcite from 0.38%to 0.83%,accumulated plastic strains are reduced almost 95%under the same loading condition.Effects of the initial static loads,confining pressures,the number of cycles,and amplitudes of the cyclic loads are also evaluated. 展开更多
关键词 Traffic load EICP method Bio-inspired treatment unconfined compression Confined compression
下载PDF
The geomechanical properties of soils treated with nanosilica particles
17
作者 Gizem Aksu Tugba Eskisar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期954-969,共16页
This study examines the effect of nanosilica(NS)additive to improve the mechanical properties of clay,clayey sand,and sand.The engineering properties of the soils were investigated through Atterberg limits,compaction,... This study examines the effect of nanosilica(NS)additive to improve the mechanical properties of clay,clayey sand,and sand.The engineering properties of the soils were investigated through Atterberg limits,compaction,unconfined compression,ultrasonic pulse velocity(UPV),freeze-thaw,and direct shear tests.The NS content varied from 0%to 0.7%and cement content was 5%and 10%by the dry weight of the soil.The curing period varied from 7 d to 150 d.The consistency,compaction,and strength properties of the soils were affected by the presence of NS and cement.The optimum NS contents in clay specimens with 5%and 10%cement were 0.5%and 0.7%,respectively.It was 0.7%in sand specimens with both cement ratios,as well as 0.3%and 0.7%in clayey sand specimens with 5%and 10%cement,respectively.In terms of freeze-thaw resistance,clayey sand specimens containing 0.5%NS and 10%cement had the minimum strength loss.Exponential relationships existed between the ultrasonic pulse velocity(UPV)and the unconfined compressive strength(UCS)of soil specimens having the same curing period.The shear strength parameters of the soils also improved with the addition of NS.Scanning electron microscope(SEM)images demonstrated that cement and NS contributed to the improvement of the soils by producing a denser and more uniform structure.It was concluded that the minor addition of NS could potentially improve the geomechanical properties of the soils. 展开更多
关键词 Nanosilica(NS) Atterberg limits COMPACTION unconfined compressive strength(UCS) Ultrasonic pulse velocity(UPV) FREEZE-THAW
下载PDF
Influence of Salt-Lime Stabilization on Soil Strength for Construction on Soft Clay
18
作者 Md. Moheful Islam Chowdhury Zubayer Bin Zahid +2 位作者 Mohammad Abu Umama Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第3期528-539,共12页
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo... Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering. 展开更多
关键词 Organic Soil Bearing Capacity Soil Improvement Salt-Lime unconfined Compressive Strength
下载PDF
Strength and deformation characteristics of carbonated reactive magnesia treated silt soil 被引量:17
19
作者 蔡光华 刘松玉 +2 位作者 杜延军 章定文 郑旭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1859-1868,共10页
A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, str... A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy. 展开更多
关键词 carbon dioxide accelerated carbonation reactive magnesia unconfined compressive strength strength-prediction model
下载PDF
Solidification of loess using microbial induced carbonate precipitation 被引量:11
20
作者 LIU Xiao-jun FAN Jin-yue +1 位作者 YU Jing GAO Xin 《Journal of Mountain Science》 SCIE CSCD 2021年第1期265-274,共10页
Microbial-induced carbonate precipitation(MICP)is a relatively innovative and environmentally-friendly soil reinforcement technology,primarily used on sand,but its application in loess has rarely been studied.This pap... Microbial-induced carbonate precipitation(MICP)is a relatively innovative and environmentally-friendly soil reinforcement technology,primarily used on sand,but its application in loess has rarely been studied.This paper explores the viability of the MICP technique for improving the engineering properties of typical loess.Sporosarcina pasteurii was used to trigger carbonate precipitation.Factors such as reaction temperature,p H of the media,and the inoculation ratio were adopted to determine the optimum conditions.Different concentrations of Sporosarcina pasteurii and cementation reagent were selected for combination to treat the loess samples with a selfdesigned vacuum test device.The unconfined compressive strength and calcium carbonate content of the treated samples were tested and Scanning Electron Microscopy(SEM)was carried out to evaluate the improving effect.The results showed that the optimum conditions are reaction temperature of 30℃,p H of the media of 9,a higher inoculation ratio can produce higher enzyme activity and monomer enzyme activity.The engineering properties of the MICP-treated loess are significantly improved.The obtained unconfined compressive strength increases nearly 4 times when the OD600 is 1.5 and cementation reagent concentration is 1 mol/L.The test results of calcium carbonate content are consistent with unconfined compressive strength.Finally,the microstructure of loess samples was quantitatively analyzed by Pore(Particle)and cracks analysis system(PCAS).It was showed that MICP has a great influence on the surface porosity,followed by the pore fractal dimension and the probability entropy,but has little influence on the pore average form factor. 展开更多
关键词 Loess solidification MICP unconfined compressivestrength Calciumcarbonate MICROSTRUCTURE
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部