Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the character...Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.展开更多
Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 spec...Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.展开更多
基金Supported by the Petrochina Science and Technology Major Project(2016B-05)。
文摘Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.
基金Supported by the China National Funds for Distinguished Young Scientists(51025932)the National Natural Science Foundation of China(51179128)Program of Shanghai Academic Chief Scientist(11XD1405200)
文摘Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.