期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Under-determined blind source separation using complementary filter based sub-band division
1
作者 冯涛 朱立东 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第2期71-78,共8页
This paper considers the blind source separation in under-determined case,when there are more sources than sensors.So many algorithms based on sparse in some signal representation domain,mostly in Time-Frequency(T-F) ... This paper considers the blind source separation in under-determined case,when there are more sources than sensors.So many algorithms based on sparse in some signal representation domain,mostly in Time-Frequency(T-F) domain,are proposed in recent years.However,constrained by window effects and T-F resolution,these algorithms cannot have good performance in many cases.Considering most of signals in real world are band-limited signals,a new method based on sub-band division is proposed in this paper.Sensing signals are divided into different sub-bands by complementary filter firstly.Then,classical Independent Component Analysis(ICA) algorithms are applied in each sub-band.Next,based on each sub-band's estimation of mixing matrix,the mixing matrix is estimated with cluster analysis algorithms.After that,the sub-band signals are recovered using the estimation mixing matrix,and then,the resource signals are reconstructed by combining the related sub-band signals together.This method can recover the source signals if active sources at any sub-band do not exceed that of sensors.This is also a well mixing matrix estimating algorithm.Finally,computer simulation confirms the validity and good separation performance of this method. 展开更多
关键词 under-determined blind source separations complementary filters cluster analysis
下载PDF
Network Sorting Algorithm of Multi-Frequency Signal with Adaptive SNR
2
作者 Xinyong Yu Ying Guo +2 位作者 Kunfeng Zhang Lei Li Hongguang Li 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期206-212,共7页
An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in... An signal noise ratio( SNR) adaptive sorting algorithm using the time-frequency( TF)sparsity of frequency-hopping( FH) signal is proposed in this paper. Firstly,the Gabor transformation is used as TF transformation in the system and a sorting model is established under undetermined condition; then the SNR adaptive pivot threshold setting method is used to find the TF single source. The mixed matrix is estimated according to the TF matrix of single source. Lastly,signal sorting is realized through improved subspace projection combined with relative power deviation of source. Theoretical analysis and simulation results showthat this algorithm has good effectiveness and performance. 展开更多
关键词 frequency-hopping(FH) under-determined adaptive signal noise ratio(SNR) time-frequency(TF) signal source network sorting
下载PDF
Non-convex sparse optimization-based impact force identification with limited vibration measurements
3
作者 Lin CHEN Yanan WANG +3 位作者 Baijie QIAO Junjiang LIU Wei CHENG Xuefeng CHEN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第3期165-185,共21页
Impact force identification is important for structure health monitoring especially in applications involving composite structures.Different from the traditional direct measurement method,the impact force identificati... Impact force identification is important for structure health monitoring especially in applications involving composite structures.Different from the traditional direct measurement method,the impact force identification technique is more cost effective and feasible because it only requires a few sensors to capture the system response and infer the information about the applied forces.This technique enables the acquisition of impact locations and time histories of forces,aiding in the rapid assessment of potentially damaged areas and the extent of the damage.As a typical inverse problem,impact force reconstruction and localization is a challenging task,which has led to the development of numerous methods aimed at obtaining stable solutions.The classicalℓ2 regularization method often struggles to generate sparse solutions.When solving the under-determined problem,ℓ2 regularization often identifies false forces in non-loaded regions,interfering with the accurate identification of the true impact locations.The popularℓ1 sparse regularization,while promoting sparsity,underestimates the amplitude of impact forces,resulting in biased estimations.To alleviate such limitations,a novel non-convex sparse regularization method that uses the non-convexℓ1-2 penalty,which is the difference of theℓ1 andℓ2 norms,as a regularizer,is proposed in this paper.The principle of alternating direction method of multipliers(ADMM)is introduced to tackle the non-convex model by facilitating the decomposition of the complex original problem into easily solvable subproblems.The proposed method namedℓ1-2-ADMM is applied to solve the impact force identification problem with unknown force locations,which can realize simultaneous impact localization and time history reconstruction with an under-determined,sparse sensor configuration.Simulations and experiments are performed on a composite plate to verify the identification accuracy and robustness with respect to the noise of theℓ1-2-ADMM method.Results indicate that compared with other existing regularization methods,theℓ1-2-ADMM method can simultaneously reconstruct and localize impact forces more accurately,facilitating sparser solutions,and yielding more accurate results. 展开更多
关键词 impact force identification inverse problem sparse regularization under-determined condition alternating direction method of multipliers
原文传递
Data recovery with sub-Nyquist sampling:fundamental limit and a detection algorithm
4
作者 Xiqian LUO Zhaoyang ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第2期232-243,共12页
While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss,the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstance... While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss,the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstances.Previous works on sub-Nyquist sampling achieved dimensionality reduction mainly by transforming the signal in certain ways.However,the underlying structure of the sub-Nyquist sampled signal has not yet been fully exploited.In this paper,we study the fundamental limit and the method for recovering data from the sub-Nyquist sample sequence of a linearly modulated baseband signal.In this context,the signal is not eligible for dimension reduction,which makes the information loss in sub-Nyquist sampling inevitable and turns the recovery into an under-determined linear problem.The performance limits and data recovery algorithms of two different sub-Nyquist sampling schemes are studied.First,the minimum normalized Euclidean distances for the two sampling schemes are calculated which indicate the performance upper bounds of each sampling scheme.Then,with the constraint of a finite alphabet set of the transmitted symbols,a modified time-variant Viterbi algorithm is presented for efficient data recovery from the sub-Nyquist samples.The simulated bit error rates(BERs)with different sub-Nyquist sampling schemes are compared with both their theoretical limits and their Nyquist sampling counterparts,which validates the excellent performance of the proposed data recovery algorithm. 展开更多
关键词 Nyquist-Shannon sampling theorem Sub-Nyquist sampling Minimum Euclidean distance under-determined linear problem Time-variant Viterbi algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部