In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr...A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.展开更多
Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ...Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.展开更多
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno...Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.展开更多
To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the preconditi...To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the precondition of successful ascending mining. By using "device of leak measuring by blocking up double ends", it detected the height of overburden water flowing fractured zone originated from sub-coal seams mining. Thus it proved that the actual mining roadway of No.2 upper ascending seam was located in the smooth sagging zone. On the basis of analyzing the stress-releasing effect of sub-coal seams mining to upper coal seams by using RFPA software, it analyzed the stability of up-face coal seams and the reasonable location of starting cut in up-face coal seams. It also analyzed the reasonable gateway location in upper coal seams, which ensured the crossheading in upper coal seams out of the effect of sub-coal work face mining by using theory of underground pressure. Meanwhile, the reasonable pillars dimensions in upper coal seams by building the structure mechanics model of stope were researched. It can make the roadway driven along next goaf to be located in low stress zone, and be beneficial to keeping roads stable owing to less stress of surrounding rock. Finally, it tested the rationality of the layout method of roads in upper coal seams by engineering field measurement in 3221 working face.展开更多
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s...The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.展开更多
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still d...Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se...In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are emplo...Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic.展开更多
It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal...It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.展开更多
The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the ...The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..展开更多
Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclos...Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.展开更多
Based on the results of similar material simulation, the laws of slope movementdue to mining under a gully were analyzed. Selected a slope rock as objective, the mechanisms of slope movement influence upon underground...Based on the results of similar material simulation, the laws of slope movementdue to mining under a gully were analyzed. Selected a slope rock as objective, the mechanisms of slope movement influence upon underground mining were proposed, and respective structural models were built by means of numerical modeling and physical simulation.It holds the point that the influence of slope movement on underground mining could becontrolled to some extent by appropriate measures. The results indicate that, forgully-ward mining, which mines toward a gully, the slope rock slides horizontally and rotates in layers; for gully-away mining, which mines away from the gully, the slope rock rotates in a reversed polygon. The slope movement associated with mining under a gully isattributed to pre-existing free faces in the ground gully and underground mining-inducedfree faces.展开更多
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le...Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.展开更多
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
基金funded by State Key Laboratory of Strata Intelligent Control and Green Mining Cofounded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(Grant No.MDPC2023ZR01)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2019-19)Major research project of Guizhou Provincial Department of Education on innovative groups(Grant No.Qianjiaohe KY[2019]070)。
文摘A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.
基金supported by the National Natural Science Foundation of China(52204164)Fundamental Research Funds for the Central Universities(2022XJSB03)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001),which are gratefully acknowledged.
文摘Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
基金the Natural Science Fund of China(70771060)the Production Safety and Supervision of Management Bureau of China(04-116)+3 种基金the National Soft Science Planed Program(2004DGQ3D090)and(2006GXQ3D154)the Natural Science Fund of Shandong Province(Y2006H10)the Social Science Planning Program of Shandong Province(06BJJ005)the Soft-science Planed Program of Shandong Province(2007RKA134)
文摘Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
文摘To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the precondition of successful ascending mining. By using "device of leak measuring by blocking up double ends", it detected the height of overburden water flowing fractured zone originated from sub-coal seams mining. Thus it proved that the actual mining roadway of No.2 upper ascending seam was located in the smooth sagging zone. On the basis of analyzing the stress-releasing effect of sub-coal seams mining to upper coal seams by using RFPA software, it analyzed the stability of up-face coal seams and the reasonable location of starting cut in up-face coal seams. It also analyzed the reasonable gateway location in upper coal seams, which ensured the crossheading in upper coal seams out of the effect of sub-coal work face mining by using theory of underground pressure. Meanwhile, the reasonable pillars dimensions in upper coal seams by building the structure mechanics model of stope were researched. It can make the roadway driven along next goaf to be located in low stress zone, and be beneficial to keeping roads stable owing to less stress of surrounding rock. Finally, it tested the rationality of the layout method of roads in upper coal seams by engineering field measurement in 3221 working face.
基金Supported by the Production Safety and Supervision of Management Bureau of China(04-116) the Returned Overseas Scholar Fund of Educational Department of China(2003406)+1 种基金 the Soft Science Planning Program of Shandong Province(A200423-6) the National Soft Science Planed Program (2004DGQ3D090)
文摘The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
基金Project(KLM200909)supported by Key Laboratory of Mine Spatial Information Technologies(Henan Polytechnic University,Henan Bureau of Surveying & Mapping),State Bureau of Surveying and Mapping
文摘Strip mining is one of the efficient measures to control surface subsidence and mining damage. However, the researches on the laws of the geological mining factors to upper and lower pillar's stability are still deficient in multi-coal seam strip mining at present. Based on the three dimension fast Lagrangian analysis of continua (short for FLAC3D) numerical simulation software, the laws of the stress increasing coefficient on the coal pillar and its stability were systematically studied for different depths, different mining widths, different interlayer spacings, different mining thicknesses, different properties of interstratified rock and the spacial relations of the upper and lower pillars in vertical alignment in multi-coal seam strip mining. The function relation between the stress increasing coefficient of upper and lower pillars with the mining depth, mining widths, interlayer spacing, mining thickness, property of interstratified rock and the spatial relationship were obtained.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
基金support of the Open Fund of State Key Laboratory of Oil and Gas Reser-voir Geology and Exploitation (Southwest Petroleum University) (PLN0610)the Opening Project of He-nan Key Laboratory of Coal Mine Methane and Fire Prevention (HKLGF200706)+3 种基金 the National Natural Science Foundation of China (No. 50334060, 50474025, 50774106)the National Key Fundamental Research and Development Program of China (No. 2005CB221502)the Natural Science Innovation Group Foundation of China (No. 50621403)the Natural Science Foundation of Chongqing of China(No. CSTC, 2006BB7147, 2006AA7002).
文摘In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金The authors gratefully acknowledge financial support from the Natural Science Foundation of China(51674264.51574244)the National Key R&D Plan of China(2018YFC0604501)+1 种基金the China Postdoctoral Science Foundation(2018M631622)Special acknowledgements are also given to the China Scholarship Council(CSC).
文摘Understanding the characteristics of drawing body shape is essential for optimization of drawing parameters in longwall top coal caving mining.In this study,both physical experiments and theoretical analysis are employed to investigate these characteristics and derive a theoretical equation for the drawing body shape along the working face in an inclined seam.By analyzing the initial positions of drawn marked particles,the characteristics of the drawing body shape for different seam dip angles are obtained.It is shown that the drawing body of the top coal exhibits a shape-difference and volume-symmetry characteristic,on taking a vertical line through the center of support opening as the axis of symmetry,the shapes of the drawing body on the two sides of this axis are clearly different,but their volumes are equal.By establishing theoretical models of the drawing body in the initial drawing stage and the normal drawing stage,a theoretical equation for the drawing body in an inclined seam is proposed,which can accurately describe the characteristics of the drawing body shape.The shape characteristics and volume symmetry of the drawing body are further analyzed by comparing the results of theoretical calculations and numerical simulations.It is shown that one side of the drawing body is divided into two parts by an inflection point,with the lower part being a variation development area.This variation development area increases gradually with increasing seam dip angle,resulting in an asymmetry of the drawing body shape.However,the volume symmetry coefficient fluctuates around 1 for all values of the seam dip angle variation,and the volumes of the drawing body on the two sides are more or less equal as the variation development volume is more or less equal to the cut volume.Both theoretical calculations and numerical simulations confirm that the drawing body of the top coal exhibits the shape-difference and volume-symmetry characteristic.
基金sponsored by the National Natural Science Foundation of China(No.51374092)
文摘It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.
基金Supported by the National Natural Science Foundation of China (50375026, 50375028) the National High-tech R&D Program of China (863 Program) (2012AA06A407)
文摘The paper introduced complete sets of automatic equipment and technology used in thin seam coal face, and proposed the comprehensive mechanization and automation of safe and high efficiency mining models based on the thin seam drum shearer. The key technology of short length and high power thin seam drum shearer, and new type roof support with big extension ratio and plate canopy were introduced. The new research achievement on automatic control system of complete sets of equipment for the thin seam coal, which composed of electronic-hydraulic system, compact thin seam roof supports, high effective shearer with intelligent control system, and characterized by automatical follow-up and remote control technology, was described in this paper..
基金Financial support for this work, provided by the Research Fund of the Fundamental Research Funds for the Central Universities of China University of Mining & Technology (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X2)+1 种基金the Jiangsu "333" High Qualified Talents, the National Natural Science Foundation of China (Nos. 50904063 and 51004101)the Scientific Research Foundation of China University of Mining & Technology (Nos. 2008A003 and 2009A001)
文摘Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.
基金Supported by the Program for New Century Excellent Talents in University (NCET-05-0480)Gradute Student Scientific Research Innovation in University of Jiangsu Province
文摘Based on the results of similar material simulation, the laws of slope movementdue to mining under a gully were analyzed. Selected a slope rock as objective, the mechanisms of slope movement influence upon underground mining were proposed, and respective structural models were built by means of numerical modeling and physical simulation.It holds the point that the influence of slope movement on underground mining could becontrolled to some extent by appropriate measures. The results indicate that, forgully-ward mining, which mines toward a gully, the slope rock slides horizontally and rotates in layers; for gully-away mining, which mines away from the gully, the slope rock rotates in a reversed polygon. The slope movement associated with mining under a gully isattributed to pre-existing free faces in the ground gully and underground mining-inducedfree faces.
文摘Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.