The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional...For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.展开更多
The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dyn...The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dynamics, a novel nonlinear dynamic model for three-axis liquid-filled spacecraft is presented, and in this paper, the multi-body dynamics method is utilized. In this model, the fuel slosh is represented by the motions of an equivalent sphere pendulum, and the fuel slosh is underactuated. The proposed dynamics model meets the demand of attitude controller design of liquid-filled spacecraft. Then, a nonlinear proportional-plus-derivative (PD) type controller is designed for the proposed model based on the Lyapunov direct approach. This controller can suppress the fuel slosh and stabilize the attitude of the liquid-filled spacecraft. Numerical simulations are presented to verify the effectiveness of the proposed nonlinear dynamic model and the designed underactuated controller when compared with the conventional control scheme.展开更多
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金supported by National Natural Science Foundation of China (10902003)
文摘For an underactuated spacecraft using only one thruster, the attitude controllability with respect to the or- bit frame is studied in the presence of periodical oscillation disturbance, which provides a preconditional guide on de- signing control law for underactuated attitude control sys- tem. Firstly, attitude dynamic model was established for an underactuated spacecraft, and attitude motion was described using the special orthogonal group (SO (3)). Secondly, Liou- ville theorem was used to confirm that the flow generated by the drift vector of the underactuated attitude control system is volume-preserving. Furthermore, according to Poincar6's re- currence theorem, we draw conclusions that this drift field is weakly positively poisson stable (WPPS). Thirdly, the suffi- cient and necessary condition of controllability was obtained on the basis of lie algebra rank condition (LARC). Finally, the controllable conditions were analyzed and simulated in different cases of inertia matrix with the installed position of thruster.
基金Sponsored by the Innovative Team Program of the National Natural Science Foundation of China ( Grant No. 61021002)
文摘The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dynamics, a novel nonlinear dynamic model for three-axis liquid-filled spacecraft is presented, and in this paper, the multi-body dynamics method is utilized. In this model, the fuel slosh is represented by the motions of an equivalent sphere pendulum, and the fuel slosh is underactuated. The proposed dynamics model meets the demand of attitude controller design of liquid-filled spacecraft. Then, a nonlinear proportional-plus-derivative (PD) type controller is designed for the proposed model based on the Lyapunov direct approach. This controller can suppress the fuel slosh and stabilize the attitude of the liquid-filled spacecraft. Numerical simulations are presented to verify the effectiveness of the proposed nonlinear dynamic model and the designed underactuated controller when compared with the conventional control scheme.