Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on t...Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.展开更多
In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations t...In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.展开更多
基金Project supported by the Autonomous Innovation Fund,China (Grant Nos.0109012922 and 0109012926)the Youth Foundation of Department of Education of Hubei Province,China (Grant No.Q20101602)
文摘Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA17040502)。
文摘In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma.