期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive blind separation of underdetermined mixtures based on sparse component analysis 被引量:3
1
作者 YANG ZuYuan HE ZhaoShui XIE ShengLi FU YuLi 《Science in China(Series F)》 2008年第4期381-393,共13页
The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult t... The independence priori is very often used in the conventional blind source separation (BSS). Naturally, independent component analysis (ICA) is also employed to perform BSS very often. However, ICA is difficult to use in some challenging cases, such as underdetermined BSS or blind separation of dependent sources. Recently, sparse component analysis (SCA) has attained much attention because it is theoretically available for underdetermined BSS and even for blind dependent source separation sometimes. However, SCA has not been developed very sufficiently. Up to now, there are only few existing algorithms and they are also not perfect as well in practice. For example, although Lewicki-Sejnowski's natural gradient for SCA is superior to K-mean clustering, it is just an approximation without rigorously theoretical basis. To overcome these problems, a new natural gradient formula is proposed in this paper. This formula is derived directly from the cost function of SCA through matrix theory. Mathematically, it is more rigorous. In addition, a new and robust adaptive BSS algorithm is developed based on the new natural gradient. Simulations illustrate that this natural gradient formula is more robust and reliable than Lewicki-Sejnowski's gradient. 展开更多
关键词 underdetermined mixtures blind source separation (BSS) dependent sources sparse component analysis (SCA) sparse representation independent component analysis (ICA) natural gradient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部