In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ...In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.展开更多
The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparat...The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.展开更多
In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression an...In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.展开更多
According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load...According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.展开更多
To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project ...To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.展开更多
A semi-analytical method of solving the problem of dynamic stress concentration of arbitrary underground structure under the effect of blast waves was introduced. Using the Fourier transform theory, the shock waves (...A semi-analytical method of solving the problem of dynamic stress concentration of arbitrary underground structure under the effect of blast waves was introduced. Using the Fourier transform theory, the shock waves (in the forms of SH-waves) can be converted into frequency bands. After employing complex functions and conformal mapping, the admittance functions of various underground structures were obtained. Then, the problem of the time domain dynamic stress response of underground structure can be easily solved through the Fourier inverse transform. At last, the results and curves of the dynamic stress for the square, triangle and horseshoe cavity were presented.展开更多
In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underg...In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.展开更多
Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of groun...Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures.展开更多
A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used ...A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used for theoreticalanalysis and numerical simulation to analyze the stability of cap rock.Acoustic emission techniques were also adopted to carry outlong term real time rupture monitoring in cap rock.Therefore,a complete safety evaluation system for the cap rock was establishedto ensure safe operation of subsequent blasting processes.The ideal way of eliminating collapse hazard of such cavity is cap rockcaving through deep-hole blasting,thus,two deep-hole blasting schemes named as vertical deep-hole blasting scheme and one-timeraise driving integrated with deep-hole bench blasting scheme were proposed.The vertical deep-hole blasting scheme has moreexplosive consumption,but the relatively simple blasting net work structure can greatly reduce workloads.However,the one-timeraise driving integrated with deep-hole bench blasting scheme can obviously reduce explosive consumption,but the higher technicalrequirements on drilling,explosive charging and blasting network will increase workloads.展开更多
This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-maki...This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.展开更多
There are several underground mines in India which operate in close proximity to an operating surface mine.Under such scenario,the blast induced stress waves generated due to surface blasting may be a potential source...There are several underground mines in India which operate in close proximity to an operating surface mine.Under such scenario,the blast induced stress waves generated due to surface blasting may be a potential source to cause instability of adjoining underground mine structures.Using seismographs,54 blast induced vibration data were recorded at various locations in the roof,floor and pillars of the underground mine at Hingir Rampur mine of Coal India Limited by synchronizing the timing of surface blasting carried at an adjacent Samleshwari opencast mine.Results of this study show that Artificial Neural Network(ANN)has better prediction potential of peak particle velocity(PPV)and damage to adjacent underground structures due to surface blasting as compared to conventional regression methods.In order to assess and predict the impact of surface blasts on underground workings,Blast Damage Factor(BDF)has been evolved.The study shows that site specific charts can predict the blast damage class at an underground location due to surface blasting for known distances and explosive charge per delay.The severe damage in case study mine site took place when peak particle velocity exceeded 162 mm/s and PPV less than 51 mm/s had no probability of damage to underground structures due to surface blasting.展开更多
基金Supported by Project from National Natural Science Foundation of China(50674111)the National key Technology R&D Program in 10th Five Years Plan of China
文摘In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.
基金Project (50490272) supported by the National Natural Science Foundation of ChinaProject(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.
文摘In order to increase the safety of working environment and decrease the unwanted costs related to overbreak in tunnel excavation projects, it is necessary to minimize overbreak percentage. Thus, based on regression analysis and fuzzy inference system, this paper tries to develop predictive models to estimate overbreak caused by blasting at the Alborz Tunnel. To develop the models, 202 datasets were utilized, out of which 182 were used for constructing the models. To validate and compare the obtained results,determination coefficient(R2) and root mean square error(RMSE) indexes were chosen. For the fuzzy model, R2 and RMSE are equal to 0.96 and 0.55 respectively, whereas for regression model, they are 0.41 and 1.75 respectively, proving that the fuzzy predictor performs, significantly, better than the statistical method. Using the developed fuzzy model, the percentage of overbreak was minimized in the Alborz Tunnel.
基金Project(50490272) supported by the National Natural Science Foundation of China Project(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.
文摘To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.
文摘A semi-analytical method of solving the problem of dynamic stress concentration of arbitrary underground structure under the effect of blast waves was introduced. Using the Fourier transform theory, the shock waves (in the forms of SH-waves) can be converted into frequency bands. After employing complex functions and conformal mapping, the admittance functions of various underground structures were obtained. Then, the problem of the time domain dynamic stress response of underground structure can be easily solved through the Fourier inverse transform. At last, the results and curves of the dynamic stress for the square, triangle and horseshoe cavity were presented.
文摘In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.
基金supported by Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220975)the National Natural Science Foundation of China(Grant Nos.51874350 and 41807259).
文摘Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of China
文摘A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used for theoreticalanalysis and numerical simulation to analyze the stability of cap rock.Acoustic emission techniques were also adopted to carry outlong term real time rupture monitoring in cap rock.Therefore,a complete safety evaluation system for the cap rock was establishedto ensure safe operation of subsequent blasting processes.The ideal way of eliminating collapse hazard of such cavity is cap rockcaving through deep-hole blasting,thus,two deep-hole blasting schemes named as vertical deep-hole blasting scheme and one-timeraise driving integrated with deep-hole bench blasting scheme were proposed.The vertical deep-hole blasting scheme has moreexplosive consumption,but the relatively simple blasting net work structure can greatly reduce workloads.However,the one-timeraise driving integrated with deep-hole bench blasting scheme can obviously reduce explosive consumption,but the higher technicalrequirements on drilling,explosive charging and blasting network will increase workloads.
文摘This paper gives insight into the use of underground space in Helsinki,Finland.The city has an underground master plan(UMP) for its whole municipal area,not only for certain parts of the city.Further,the decision-making history of the UMP is described step-by-step.Some examples of underground space use in other cities are also given.The focus of this paper is on the sustainability issues related to urban underground space use,including its contribution to an environmentally sustainable and aesthetically acceptable landscape,anticipated structural longevity and maintaining the opportunity for urban development by future generations.Underground planning enhances overall safety and economy efficiency.The need for underground space use in city areas has grown rapidly since the 21 st century;at the same time,the necessity to control construction work has also increased.The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term.The plan also provides the framework for managing and controlling the city’s underground construction work and allows suitable locations to be allocated for underground facilities.Tampere,the third most populated city in Finland and the biggest inland city in the Nordic countries,is also a good example of a city that is taking steps to utilise underground resources.Oulu,the capital city of northern Finland,has also started to ‘go underground’.An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed.A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.
文摘There are several underground mines in India which operate in close proximity to an operating surface mine.Under such scenario,the blast induced stress waves generated due to surface blasting may be a potential source to cause instability of adjoining underground mine structures.Using seismographs,54 blast induced vibration data were recorded at various locations in the roof,floor and pillars of the underground mine at Hingir Rampur mine of Coal India Limited by synchronizing the timing of surface blasting carried at an adjacent Samleshwari opencast mine.Results of this study show that Artificial Neural Network(ANN)has better prediction potential of peak particle velocity(PPV)and damage to adjacent underground structures due to surface blasting as compared to conventional regression methods.In order to assess and predict the impact of surface blasts on underground workings,Blast Damage Factor(BDF)has been evolved.The study shows that site specific charts can predict the blast damage class at an underground location due to surface blasting for known distances and explosive charge per delay.The severe damage in case study mine site took place when peak particle velocity exceeded 162 mm/s and PPV less than 51 mm/s had no probability of damage to underground structures due to surface blasting.